A string is stretched and fastened to two points x = 0 and x = l apart. Motion is started by
displacing the string into the form y = k(lx − x2
) from which it is released at time t = 0. Find
the displacement of any point on the string at a distance of x from one end at time t.
Hint: From this problem, we have the following boundary conditions:
y(0,t) = 0 for all t > 0
y(l,t) = 0 for all t > 0
∂y
∂t
(x, 0) = 0 (initial velocity is zero)
y(x, 0) = k(lx − x2
)
"y=k(lx-x^2)"
Boundary conditions:
1. "y(0,t)=0" For all t>0
2. "y(1,t)=0" For all t>0
3. "\\frac{dy}{dt}(y,0)=0"
4. "y(x,0)=k(lx-x^2)"
The displacement y(x,t) is given by the equation
"\\frac{d^2y}{dt^2}=a^2\\frac{d^2y}{dx^2}" ..........(i)
The suitable solution of (i) is given by
"y(x,t)=(Acos\\ lx+Bsin\\ lx)(Ccos\\ lat+Dsin\\ lat)"......(ii)
Using the first and second boundary conditions in (ii) we get,
A=0 and "\\lambda=\\frac{n\u03c0}{l}"
"\\therefore y(x,t)=Bsin\\frac{n\u03c0x}{l}(Ccos \\frac{n\u03c0at}{l}+Dsin\\frac{n\u03c0at}{l}.........(iii)"
Now "\\frac{dy}{dt}=Bsin\\frac{n\u03c0x}{l}(-Csin\\frac{n\u03c0at}{l}\\cdot\\frac{n\u03c0a}{l}+Dcos\\frac{n\u03c0at}{l}\\cdot\\frac{n\u03c0a}{l})"
Using third boundary condition,
0="Bsin\\frac{n\u03c0x}{l}D\\frac{n\u03c0a}{l}"
Here, B can not be 0, hence,D=0
Thus equation (iii) becomes;
"y(x,t)=Bsin\\frac{n\u03c0x}{l}\\cdot Ccos\\frac{n\u03c0at}{l}"
"=B_1sin\\frac{n\u03c0x}{l}\\cdot cos\\frac{n\u03c0at}{l}" ,where B1=Bc
The most general solution is;
"y(x,t)=\\displaystyle\\sum_{n=1}^{\\infty}Bsin\\frac{n\u03c0x}{l} cos\\frac{n\u03c0at}{l}" ....(iv)
Using the forth boundary condition;
"k(lx-x^2)=\\displaystyle\\sum_{n=1}^{\\infty}Bsin\\frac{n\u03c0x}{l}" .....(v)
The RHS of (v) is the half range Fourier sine series of the LHS function
"\\therefore B_n=\\frac{2}{l}\\int_0^lf(x)\\cdot sin\\frac{n\u03c0x}{l}dx"
"=\\frac{2k}{l}\\int_0^l(lx-x^2)d(\\frac{-cos\\frac{n\u03c0x}{l}}{\\frac{n\u03c0}{l}})"
"=\\frac{2k}{l}[(lx-x^2)d(\\frac{-cos\\frac{n\u03c0x}{l}}{\\frac{n\u03c0}{l}})-(l-2x)(\\frac{-sin\\frac{n\u03c0x}{l}}{\\frac{n^2\u03c0^2}{l^2}})+(-2)(\\frac{cos\\frac{n\u03c0x}{l}}{\\frac{n^3\u03c0^3}{l^3}}]_0^l"
"=\\frac{2k}{l}(\\frac{-2cosn\u03c0}{\\frac{n^3\u03c0^3}{l^3}})+(\\frac{2}{\\frac{n^3\u03c0^3}{l^3}})"
"=\\frac{2k}{l}\\cdot\\frac{2l^3}{n^3\u03c0^3}(1-cosn\u03c0)"
"i.e, B_n=\\frac{4kl^2}{n^3\u03c0^3}(1-(-1)^n)\\ or\\ B_n= \\begin{cases}\n \\frac{8kl^2}{n^3\u03c0^3} &\\text{if } n\\ is\\ odd \\\\\n 0 &\\text{if } n\\ is\\ even\n\\end{cases}"
"\\therefore y(x,t)=\\displaystyle\\sum_{n=odd}^{\\infty}\\frac{8kl^2}{n^3\u03c0^3}cos\\frac{n\u03c0at}{l}sin\\frac{n\u03c0x}{l}"
Or "y(x,t)=\\frac{8k}{\u03c0^3}\\displaystyle\\sum_{n=1}^{\\infty}\\frac{1}{(2n-1)^3}cos\\frac{(2n-1)\u03c0at}{l}sin\\frac{(2n-1)\u03c0x}{l}"
Comments
Leave a comment