Answer to Question #272277 in Differential Equations for Mizzy

Question #272277

Given an RC series circuit that has an emf source of 50 volts, a resistance of 20k ohms, a capacitance of 6 microfarad and the initial charge of the capacitor is 1 microcoulomb. What is the charge in the capacitor at the end of 0.01 second? What is the current in the circuit at the end of 0.05 seconds?


1
Expert's answer
2021-11-29T19:29:16-0500
Rq+1Cq=VRq'+\dfrac{1}{C}q=V

2104q+16106q=502\cdot10^{4}q'+\dfrac{1}{6\cdot10^{-6}}q=50

q+253q=0.0025q'+\dfrac{25}{3}q=0.0025

q=253(q0.0006)q'=-\dfrac{25}{3}(q-0.0006)

dqq0.0003=253dt\dfrac{dq}{q-0.0003}=-\dfrac{25}{3}dt

Integrate


q=0.0003+c1e25t/3q=0.0003+c_1e^{-25t/3}

Given q(0)=106q(0)=10^{-6}

0.000001=0.0003+c10.000001=0.0003+c_1

c1=0.000299c_1=-0.000299

q(t)=0.00030.000299e25t/3q(t)=0.0003-0.000299e^{-25t/3}

q(0.01)=0.00030.000299e25(0.01)/3q(0.01)=0.0003-0.000299e^{-25(0.01)/3}

=24.91106(C)=24.91\cdot10^{-6} (C)

24.91 μC24.91\ \mu C

i(t)=q(t)=0.000299(253)e25t/3i(t)=q'(t)=-0.000299(-\dfrac{25}{3})e^{-25t/3}

=0.0074753e25t/3=\dfrac{0.007475}{3}e^{-25t/3}

i(0.05)=0.0074753e25(0.05)/3=0.0016426(A)i(0.05)=\dfrac{0.007475}{3}e^{-25(0.05)/3}=0.0016426(A)

=1.64( mA)=1.64(\ mA)

1.64 mA1.64\ mA



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment