use the method of separation of variables to determine the general solution to the one dimensional heat equation ∂u/∂t=α(∂2u/∂x2)=0,0≤ x≤ l,t≥ 0 subject to the initial condition u(x,0)=g(x). Hence compute the particular solution when g(x)=0
Solution;
The heat equation;
"\\frac{\\partial u}{\\partial t}=\\alpha(\\frac{\\partial^2u}{\\partial x^2})=0,0\\leq x\\leq l,t\\geq0"
Let ;
"u(x,t)=X(x)T(t)"
X(x) is some function dependent on x alone while T(t) is some function dependent on t alone.
The factorized function u(x, t) = X(x)T (t) is a solution to the heat equation if and only if;
"X(x)T'(t)=\\alpha X''(x)T(t)"
Hence;
"\\frac{X''(x)}{X(x)}=\\frac1\\alpha\\frac{T'(t)}{T(t)}"
The two sides are equal. So both sides must be independent of both x and t and hence equal to some constant, say σ. So we have;
"\\frac{X''(x)}{X(x)}=\\sigma" ; "\\frac1\\alpha\\frac{T'(t)}{T(t)}=\\sigma"
Therefore;
"X''(x)-\\sigma X(x)=0"
"T'(t)-\\alpha\\sigma T(t)=0"
If σ"\\neq" 0, the general solution to the above equations are;
"X(x)=c_1e^{\\sqrt{\\sigma}x}+c_2e^{-\\sqrt{\\sigma}x}"
"T(t)=c_3e^{\\alpha\\sigma t}"
For arbitrary constants c1, c2 and c3.
If σ = 0, the equations simplify to;
"X''(x)=0;T'(t)=0"
Whose general solutions are;
"X(x)=c_1+c_2x"
"T(t)=c_3"
Therefore the general solutions to the heat equation are;
"u(x,t)=(c_1e^{\\sqrt{\\sigma}x}+c_2e^{-\\sqrt{\\sigma}x})c_3e^{\\alpha\\sigma t}"
("\\sigma\\neq0" )
"u(x,t)=(c_1+c_2x)c_3"
("\\sigma=0" )
Subject the solutions to the initial condition;
"u(x,0)=g(x)=(c_1e^{\\sqrt{\\sigma}x}+c_2e^{-\\sqrt{\\sigma}x})c_3"
The particular solution if g(x)=0;
"g(x)=0=(c_1e^{\\sqrt{\\sigma}x}+c_2e^{-\\sqrt{\\sigma}x})c_3"
Meaning;
"c_1,c_2 ,c_3=0"
Hence;
"u(x,t)=0"
Comments
Leave a comment