use the laplace transform method to solve the boundary value problem
∂u/∂t=3(∂u/∂x), u(x,0)=4e-2x
Appliing Laplase transworm with respect to t we have
U(x,p)p-u(x,0)="3\\cdot U(x,p)'_x"
or
"\\frac{d}{dx}U(x,p)=U(x,p)\\cdot \\frac{p}{3}-\\frac{4}{3}\\cdot e^{-2x}"
homogeneous equation has the general solution
"U(x,p)=Ce^\\frac{px}{3}"
Let C=C(x).
Then
"C'(x)e^\\frac{px}{3}=-\\frac{4}{3}\\cdot e^{-2x};"
C'(x)="-\\frac{4}{3}\\cdot e^{(-2-\\frac{p}{3})x}"
"C(x)=\\frac{4}{6+p}e^{(-2-\\frac{p}{3})x}"
U(x,p)="\\frac{4}{6+p}e^{-2x}"
Using table of Laplase transform we have
"\\frac{4}{p+6}\\doteqdot 4\\cdot e^{-6t}"
Finalyy we have
u(x,t)="4\\cdot e^{-(6t+2x)}"
Comments
Leave a comment