Find the characteristic values and the characteristic functions of the sturn_ liouville problem.
d/dx[x(dy/dx)]+(λ/x)y=0
y1(1)=0,y1(e2x)=0 where λ is nonnegative
if "\\lambda=0" :
"xy'=c_1"
"y=c_1lnx+c_2"
"y'(1)=c_1=0"
"y=c_1"
if "\\lambda>0" :
"\\lambda=k^2" with "k>0"
"x^2y''+xy'+k^2y=0"
an Euler equation with indicial equation:
"r^2+k^2=(r-ik)(r+ik)=0"
"y=c_1cos(klnx)+c_2sin(klnx)"
"y'=-c_1sin(klnx)\/x+c_2cos(klnx)\/x"
"y'(1)=c_2=0"
"y'(e^{2x})=-c_1sin(2kx)\/e^{2x}=0"
"2kx=\\pi n"
"k=\\pi n\/(2x)"
"\\lambda_n=(\\pi n\/(2x))^2"
"y_n=cos(\\pi nlnx\/2x)"
Comments
Leave a comment