Solution:
A differential equation is said to be separable variable if the variables can be separated.
Given,
"\\frac{dy}{dx} = ye^{-x^2}"
"\\Rightarrow \\frac{dy}{y} = e^{-x^2}dx"
"\\Rightarrow \\int\\frac{dy}{y}=\\int e{^{-x^2}}dx"
But "\\int e^{-x^2}dx" is a non elementary integral. We can express it as a power series
"e^{-x^2}= 1 - \\frac{x^2}{1!}+\\frac{x^4}{2!}-\\frac{x^6}{3!} +\\frac{x^8}{4!}-.."
We can approximate it as
"e^{-x^2}= 1 - \\frac{x^2}{1!}+\\frac{x^4}{2!}-\\frac{x^6}{3!}"
So differential equation transforms to
"\\int\\frac{dy}{y}=\\int" "(1 - \\frac{x^2}{1!}+\\frac{x^4}{2!}-\\frac{x^6}{3!})dx"
"\\Rightarrow \\ln |y|=x - \\frac{x^3}{3}+\\frac{x^5}{10}-\\frac{x^7}{42} + C"
By initial condition y(4)=1
0 = "4 - \\frac{4^3}{3}+\\frac{4^5}{10}-\\frac{4^7}{42} + C"
"\\Rightarrow C=305.028"
So ln|y| = "x - \\frac{x^3}{3}+\\frac{x^5}{10}-\\frac{x^7}{42} +305.028"
"\\Rightarrow y=e^{(x - \\frac{x^3}{3}+\\frac{x^5}{10}-\\frac{x^7}{42} + 305.028)}"
This is the explicit solution of the given differential equation.
Comments
Leave a comment