Answer to Question #251514 in Differential Equations for usman

Question #251514
What is the separable variable? Dy/dx = ye^-x^2, y(4) = 1?
1
Expert's answer
2021-10-19T10:20:27-0400

Solution:

A differential equation is said to be separable variable if the variables can be separated.

Given,

"\\frac{dy}{dx} = ye^{-x^2}"

"\\Rightarrow \\frac{dy}{y} = e^{-x^2}dx"

"\\Rightarrow \\int\\frac{dy}{y}=\\int e{^{-x^2}}dx"

But "\\int e^{-x^2}dx"  is a non elementary integral. We can express it as a power series

"e^{-x^2}= 1 - \\frac{x^2}{1!}+\\frac{x^4}{2!}-\\frac{x^6}{3!} +\\frac{x^8}{4!}-.."

We can approximate it as

"e^{-x^2}= 1 - \\frac{x^2}{1!}+\\frac{x^4}{2!}-\\frac{x^6}{3!}"

So differential equation transforms to

"\\int\\frac{dy}{y}=\\int" "(1 - \\frac{x^2}{1!}+\\frac{x^4}{2!}-\\frac{x^6}{3!})dx"

 "\\Rightarrow \\ln |y|=x - \\frac{x^3}{3}+\\frac{x^5}{10}-\\frac{x^7}{42} + C"

By initial condition y(4)=1

0 = "4 - \\frac{4^3}{3}+\\frac{4^5}{10}-\\frac{4^7}{42} + C"

"\\Rightarrow C=305.028"

So ln|y| = "x - \\frac{x^3}{3}+\\frac{x^5}{10}-\\frac{x^7}{42} +305.028"

 "\\Rightarrow y=e^{(x - \\frac{x^3}{3}+\\frac{x^5}{10}-\\frac{x^7}{42} + 305.028)}"

This is the explicit solution of the given differential equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog