Question #250183
uxx= c^2ut by variable separation method
1
Expert's answer
2021-10-13T14:22:00-0400

We will solve the problem in next full description

1) Differential equation

ut=c2uxxu_t=c^2u_{xx} 0<x<l. t>00<x<l.\space t>0

2) Boundary conditions (zero conditions for example)

u(0,t)=0, u(l,t)=0;

3) Initial condition

u(x,0)=ϕ(x),0<x<l\phi(x),0<x<l

Solution:

Let u(x,y)=X(x)T(t) or have separeted variables.

Inserting this form in differential equation we have:

X(x)T(t)=c2T(t)X(x)X(x)T'(t)=c^2T(t)X''(x)

Dividing both paths by c2X(x)T(t)c^2X(x)T(t) we have

1c2T(t)T(t)=X(x)X(x)\frac{1}{c^2}\cdot \frac{T'(t)}{T(t)}=\frac{X''(x)}{X(x)}

In this equation left part depend on t bur right part depend on x therefore both part are equal some constant which may be denoted as -λ\lambda

Thus we have the system:

x={T+λc2T(t)=0X(x)+λX(x)=0x = \begin{cases} T'+\lambda c^2T(t)=0\\ X''(x)+\lambda\cdot X(x)=0 \end{cases}

Let we consider second eqution

X(x)+λX(x)=0X''(x)+\lambda\cdot X(x)=0

Boundary conditions at x=0 and x=l take the form:

X(0)=X(l)=0.

1) λ<0\lambda<0

General solution of ode is X(x)=C1eλx+C2eλxX(x)=C_1e^{-\sqrt{-\lambda}x}+C_2e^{\sqrt{\lambda }x}

Then X(0)=C1+C2=0X(0)=C_1+C_2=0 ,C2=C1C_2=-C_1

Therefore X(x)=C(eλxeλx)X(x)=C\cdot (e^{-\sqrt{-\lambda}x}-e^{\sqrt{-\lambda}x})

Condition X(l)=0 implies

C(eλleλl)=0C\cdot (e^{-\sqrt{-\lambda}l}-e^{\sqrt{-\lambda}l})=0 and hence C=0, therefore X(x)0\equiv0

but we need nontrival solution hence case λ<0\lambda<0 is impossible, case λ=0\lambda=0 is impossible too with similar argues, typical case is λ>0\lambda>0

In this case X(x)=C1sin(λx)+C2cos(λx)X(x)=C_1sin(\sqrt \lambda x)+C_2cos(\sqrt \lambda x)

X(0)= C2=0=>C_2=0=> X(x)=Csin(λx)Csin(\sqrt \lambda x)

X(l)=0=>sin(λl)=0=>λl=πn.n>0sin(\sqrt\lambda l)=0=>\sqrt \lambda l=\pi\cdot n.n>0

λn=(πnl)2\lambda_n=\left(\frac{\pi\cdot n}{l} \right)^2 and Xn(x)=sin(πnxl)X_n(x)=sin\left(\frac{\pi\cdot n\cdot x}{l}\right)

For this λn\lambda_n an equation T+λc2T(t)=0T'+\lambda c^2T(t)=0 has solution

Tn(t)=eλnc2tT_n(t)=e^{-\lambda_n\cdot c^2\cdot t} and u+n(x,t)=Tn(t)Xn(x)=eλnc2tsin(πnxl)u+n(x,t)=T_n(t)X_n(x)=e^{-\lambda_nc^2t}sin\left( \frac{\pi nx}{l}\right)

After that we search solution in the form

n=1Cneλnc2tsin(πnxl)\sum_{n=1}^{\infty}C_ne^{-\lambda_nc^2t}sin\left( \frac{\pi nx}{l}\right) for initial condition to satisfy.

Insertinf t=0 we have

n=1Cnsin(πnxl)=ϕ(x),0<x<l\sum_{n=1}^{\infty}C_nsin\left( \frac{\pi nx}{l}\right)=\phi(x),0<x<l

Then Cn=2l0lϕ(x)sinπnzldzC_n=\frac{2}{l}\int_0^l\phi(x)sin\frac{\pi n z}{l}dz -Fourier coefficients. With such coefficients solution of the problem is:

n=1Cneλnc2tsin(πnxl)\sum_{n=1}^{\infty}C_ne^{-\lambda_nc^2t}sin\left( \frac{\pi nx}{l}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS