Answer to Question #250467 in Differential Equations for Jia

Question #250467
exact (x^2+y^2-5)dx=(y+xy)dy y(0)=1
1
Expert's answer
2021-10-13T12:51:24-0400
"(x^2+y^2-5)dx+(-y-xy)dy=0"


"M(x, y)=x^2+y^2-5, M_y=2y"

"N(x, y)=-y-xy, N_x=-y"

"M_y\\not=N_x"

"\\dfrac{M_y-N_x}{N}=\\dfrac{2y-(-y)}{-y-xy}=-\\dfrac{3}{x+1}=P(x)"

Integrating factor


"\\mu(x)=e^{\\int(-{3 \\over x+1})dx}=\\dfrac{1}{(x+1)^3}"

"\\dfrac{x^2+y^2-5}{(x+1)^3}dx+\\dfrac{-y-xy}{(x+1)^3}dy=0"

"M(x, y)=\\dfrac{x^2+y^2-5}{(x+1)^3}, M_y=\\dfrac{2y}{(x+1)^3}"

"N(x, y)=-\\dfrac{y}{(x+1)^2}, N_x=\\dfrac{2y}{(x+1)^3}"

"M_y=\\dfrac{2y}{(x+1)^3}=N_x"

"f(x, y)=\\int(-\\dfrac{y}{(x+1)^2})dy+g(x)"

"=-\\dfrac{y^2}{2(x+1)^2}+g(x)"

"f_x=\\dfrac{y^2}{(x+1)^3}+g'(x)=\\dfrac{x^2+y^2-5}{(x+1)^3}"

"g'(x)=\\dfrac{x^2-5}{(x+1)^3}"

"g(x)=\\int\\dfrac{x^2-5}{(x+1)^3}dx=\\int\\dfrac{x^2+2x+1-2x-2-4}{(x+1)^3}dx"

"=\\int\\dfrac{1}{x+1}dx-2\\int\\dfrac{1}{(x+1)^2}dx-4\\int\\dfrac{1}{(x+1)^3}dx"

"=\\ln(|x+1|)+\\dfrac{2}{x+1}+\\dfrac{2}{(x+1)^2}-C"

"-\\dfrac{y^2}{2(x+1)^2}+\\ln(|x+1|)+\\dfrac{2}{x+1}+\\dfrac{2}{(x+1)^2}=C"

The initial condition "y(0)=1"


"-\\dfrac{(1)^2}{2(0+1)^2}+\\ln(|0+1|)+\\dfrac{2}{0+1}+\\dfrac{2}{(0+1)^2}=C"

"C=\\dfrac{7}{2}"

The solution of the initial value problem


"-\\dfrac{y^2}{2(x+1)^2}+\\ln(|x+1|)+\\dfrac{2}{x+1}+\\dfrac{2}{(x+1)^2}=\\dfrac{7}{2}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog