Solve the differential equation by Bernoulli equation. Show complete solution.
dy/dx + 1/3 y = 1/3 (1 + 3x) y4
"v=y^{1-n}=y^{1-4}=y^{-3}"
"v'=-3y^{-4}y'"
"-\\dfrac{1}{3}v'+\\dfrac{1}{3}v=\\dfrac{1}{3}(1+3x)"
"v'-v=-1-3x"
Integrating factor
"e^{-x}v'-e^{-x}v=-e^{-x}(1+3x)"
"d(e^{-x}v)=-e^{-x}(1+3x)dx"
Integrate
"\\int xe^{-x}dx"
"\\int udv=uv-\\int vdu"
"u=x, du=dx"
"dv=e^{-x}dx, v=\\int e^{-x}dx=-e^{-x}"
"\\int xe^{-x}dx=-xe^{-x}+\\int e^{-x}dx"
"=-xe^{-x}-e^{-x}+C_1"
"v=4+3x+Ce^x"
"y=\\dfrac{1}{\\sqrt[3]{4+3x+Ce^x}}"
Comments
Leave a comment