Answer to Question #246940 in Differential Equations for Jac

Question #246940

Solve the differential equation by Bernoulli equation. Show complete solution.


dy/dx + 1/3 y = 1/3 (1 + 3x) y4

1
Expert's answer
2021-10-06T18:09:05-0400
"y'+\\dfrac{1}{3}y=\\dfrac{1}{3}(1+3x)y^4"

"v=y^{1-n}=y^{1-4}=y^{-3}"

"v'=-3y^{-4}y'"

"-\\dfrac{1}{3}v'+\\dfrac{1}{3}v=\\dfrac{1}{3}(1+3x)"

"v'-v=-1-3x"

Integrating factor


"\\mu(x)=e^{-x}"

"e^{-x}v'-e^{-x}v=-e^{-x}(1+3x)"

"d(e^{-x}v)=-e^{-x}(1+3x)dx"

Integrate


"\\int d(e^{-x}v)=-e^{-x}(1+3x)dx"

"\\int xe^{-x}dx"

"\\int udv=uv-\\int vdu"

"u=x, du=dx"

"dv=e^{-x}dx, v=\\int e^{-x}dx=-e^{-x}"

"\\int xe^{-x}dx=-xe^{-x}+\\int e^{-x}dx"

"=-xe^{-x}-e^{-x}+C_1"


"e^{-x}v=e^{-x}+3xe^{-x}+3e^{-x}+C"

"v=4+3x+Ce^x"

"y=\\dfrac{1}{\\sqrt[3]{4+3x+Ce^x}}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog