Solve the differential equation by substitution suggested by equation. Show complete solution.
(dy/dx) = 2y/x + cos(y/x2)
"\\frac{dy}{dx}=\\frac{2y}{x}+cos(\\frac{y}{x^{2}})" this is equation (i)
Let y=Vx2
Then "\\frac{dy}{dx}=2Vx+x^{2}\\frac{dV}{dx}"
Substituting "\\frac{dy}{dx}" in equation (i)
"2Vx+x^{2}\\frac{dV}{dx}=2\\frac{Vx^{2}}{x}+cos(\\frac{Vx^{2}}{x^{2}})"
"x^{2}\\frac{dV}{dx}=2Vx-2Vx+cos(V)"
"x^{2}\\frac{dV}{dx}=cos(V)"
"\\frac{dV}{cos(V)}=\\frac{dx}{x^{2}}"
Integrating both sides;
"\\int sec(V)dV=\\int \\frac{dx}{x^{2}}"
"ln(sec(V)+tan(V))=\\frac{-1}{x}+C" this is equation (ii)
Substituting "V=\\frac{y}{x^{2}}" into equation (ii)
"ln(sec(\\frac{y}{x^{2}})+tan(\\frac{y}{x^{2}}))=\\frac{-1}{x}+C"
Comments
Leave a comment