Answer to Question #245955 in Differential Equations for Thanu

Question #245955

Solve the following IVP by power series method

xy′′ + y′ + 2y = 0, y(1) = 2,y′(1) = 4.


1
Expert's answer
2021-10-04T16:54:23-0400

Solution

New variable t = x-1  => x = t+1 and IVP is (t+1)y′′ + y′ + 2y = 0, y(0) = 2,y′(0) = 4.

Let

"y\\left(t\\right)=\\sum_{n=0}^{\\infty}{a_nt^n}"

"\\frac{dy}{dt}=\\sum_{n=1}^{\\infty}{na_nt^{n-1}}=\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}t^n}"

"\\frac{d^2y}{dt^2}=\\sum_{n=0}^{\\infty}{n\\left(n+1\\right)a_{n+1}t^{n-1}}=\\sum_{n=0}^{\\infty}{\\left(n+1\\right)\\left(n+2\\right)a_{n+2}t^n}"

Substitution into equation:

"\\left(t+1\\right)\\sum_{n=0}^{\\infty}{\\left(n+1\\right)\\left(n+2\\right)a_{n+2}t^n}+\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}t^n}+2\\sum_{n=0}^{\\infty}{a_nt^n}=0"

"\\sum_{n=0}^{\\infty}{\\left(n+1\\right)\\left(n+2\\right)a_{n+2}t^n}+\\sum_{n=1}^{\\infty}{\\left(n+1\\right)na_{n+1}t^n}+\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}t^n}+2\\sum_{n=0}^{\\infty}{a_nt^n}=0"

"2a_2+a_1+2a_0+\\sum_{n=1}^{\\infty}{\\left(n+1\\right)\\left(n+2\\right)a_{n+2}t^n}+\\sum_{n=1}^{\\infty}{\\left(n+1\\right)^2a_{n+1}t^n}+2\\sum_{n=1}^{\\infty}{a_nt^n}=0"

Coefficients near tn are equal to zero.

n=0: 2a2 +a1 + 2a0=0   =>  a2 = -a1 /2 - a0 

n>0: (n+1)(n+2)an+2+(n+1)2an+1+2an=0 =>  an+2 =-(n+1)an+1/(n+2)-2an/[(n+1) (n+2)]

From initial values for t: y(0) = 2,y′(0) = 4 => a0 = 2, a1 = 4

Therefore for recurrent formula  an+2 =-(n+1)an+1/(n+2)-2an/[(n+1) (n+2)] with  a0 = 2, a1 = 4 solution is

"y\\left(x\\right)=2+4\\left(x-1\\right)\\ +\\sum_{n=0}^{\\infty}{a_{n+2}\\left(x-1\\right)^{n+2}}"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog