y''+y=sin^2(x)
"y^{\\prime\\prime}+y=\\sin^{2}(x)" (1)
The general solution will be the sum of the complementary solution and particular solution.
Find the complementary solution for the homogeneous equation:
"y^{\\prime\\prime}+y=0".
Compose the characteristic equation:
"\\lambda^{2}+1=0\\implies \\lambda=i" or "\\lambda=-i".
For complementary solution:
"y_{c}=y_{1}(x)+y_{2}(x)", where "y_{1}(x)=C_{1}\\cos(x)" and "y_{2}(x)=C_{2}\\sin(x)."
"y_{c}=C_{1}\\cos(x)+C_{2}\\sin(x)"
-------------------------------------------------------------------------------------------------------------------------------
Find the particular solution for (1).
"\\sin^{2}(x)=\\frac{1}{2}-\\frac{1}{2}\\cos(2x)\\implies y^{\\prime\\prime}+y=\\frac{1}{2}-\\frac{1}{2}\\cos(2x)".
It's clear that "y_{p}=\\frac{1}{2}+\\alpha\\cos(2x)", "\\alpha - constant".
Find "\\alpha."
"y_p^{\\prime\\prime}+y_p=4\\alpha(-\\cos(2x))+\\frac{1}{2}+\\alpha\\cos(2x)=\\frac{1}{2}-\\frac{1}{2}\\cos(2x)".
"\\boxed{\\alpha=\\frac{1}{6}}"
"y_{p}=\\frac{1}{2}+\\frac{1}{6}\\cos(2x)".
The general solution is:
"y(x)=y_{c}(x)+y_{p}(x)=C_{1}\\cos(x)+C_{2}\\sin(x)+\\frac{1}{2}+\\frac{1}{6}\\cos(2x)".
"\\boxed{y=C_{1}\\cos(x)+C_{2}\\sin(x)+\\frac{1}{2}+\\frac{1}{6}\\cos(2x)}"
Comments
Leave a comment