Answer to Question #245173 in Differential Equations for lilly

Question #245173

y''+y=sin^2(x)


1
Expert's answer
2021-10-03T17:43:52-0400

"y^{\\prime\\prime}+y=\\sin^{2}(x)" (1)

The general solution will be the sum of the complementary solution and particular solution.

Find the complementary solution for the homogeneous equation:

"y^{\\prime\\prime}+y=0".

Compose the characteristic equation:

"\\lambda^{2}+1=0\\implies \\lambda=i" or "\\lambda=-i".

For complementary solution:

"y_{c}=y_{1}(x)+y_{2}(x)", where "y_{1}(x)=C_{1}\\cos(x)" and "y_{2}(x)=C_{2}\\sin(x)."

"y_{c}=C_{1}\\cos(x)+C_{2}\\sin(x)"

-------------------------------------------------------------------------------------------------------------------------------

Find the particular solution for (1).

"\\sin^{2}(x)=\\frac{1}{2}-\\frac{1}{2}\\cos(2x)\\implies y^{\\prime\\prime}+y=\\frac{1}{2}-\\frac{1}{2}\\cos(2x)".

It's clear that "y_{p}=\\frac{1}{2}+\\alpha\\cos(2x)", "\\alpha - constant".

Find "\\alpha."

"y_p^{\\prime\\prime}+y_p=4\\alpha(-\\cos(2x))+\\frac{1}{2}+\\alpha\\cos(2x)=\\frac{1}{2}-\\frac{1}{2}\\cos(2x)".

"\\boxed{\\alpha=\\frac{1}{6}}"

"y_{p}=\\frac{1}{2}+\\frac{1}{6}\\cos(2x)".

The general solution is:

"y(x)=y_{c}(x)+y_{p}(x)=C_{1}\\cos(x)+C_{2}\\sin(x)+\\frac{1}{2}+\\frac{1}{6}\\cos(2x)".

"\\boxed{y=C_{1}\\cos(x)+C_{2}\\sin(x)+\\frac{1}{2}+\\frac{1}{6}\\cos(2x)}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog