(1+x)dy/dx-xy=x+x^2
Answer:-
"y'+P(x)y=Q(x)"
"P(x)=-\\frac{x}{x+1}" , "Q(x)=x"
"y'+P(x)y=0"
"\\frac{dy}{y}=-P(x)dx"
"\\int\\frac{dy}{y}=-\\int P(x)dx"
"ln|y|=-\\int P(x)dx"
"y=\\pm e^{-\\int P(x)dx}"
"\\int P(x)dx=\\int(-\\frac{x}{x+1})dx=-x+ln(x+1)+c"
"y=\\frac{ce^x}{x+1}"
"y=\\frac{c(x)e^x}{x+1}"
"\\frac{d}{dx}c(x)=Q(x)e^{\\int P(x)dx}"
"\\frac{d}{dx}c(x)=(x^2+x)e^{-x}"
"\\int (x^2+x)e^{-x}dx=(-x^2-3x-3)e^{-x}+c"
"y(x)=\\frac{e^x((-x^2-3x-3)e^{-x}+c)}{x+1}"
Comments
Leave a comment