Question #235063

(x-4y-9)dx+(4x+y-2)


1
Expert's answer
2021-09-09T23:59:29-0400

Let us solve the differential equation (x4y9)dx+(4x+y2)dy=0.(x-4y-9)dx+(4x+y-2)dy=0.


Firstly, consider the system {x4y9=04x+y2=0\begin{cases}x-4y-9=0 \\ 4x+y-2=0\end{cases} which is equivalent to {x4y9=016x+4y8=0\begin{cases}x-4y-9=0 \\ 16x+4y-8=0\end{cases} and to {x4y9=017x17=0.\begin{cases}x-4y-9=0 \\ 17x-17=0\end{cases}. It follows that {x=1y=2.\begin{cases} x=1 \\ y=-2\end{cases}.


Let us use the transformation x=u+1, y=v2.x=u+1,\ y=v-2. Then we get (u4v)du+(4u+v)dv=0.(u-4v)du+(4u+v)dv=0.

Also let u=tv,u=tv, and hence du=tdv+vdt.du=tdv+vdt. It follows that (tv4v)(tdv+vdt)+(4tv+v)dv=0.(tv-4v)(tdv+vdt)+(4tv+v)dv=0.

Since for v=0v=0 we have that y=2y=-2 is not a solution of the differential equation, let us divide both sides by v:v: (t4)(tdv+vdt)+(4t+1)dv=0.(t-4)(tdv+vdt)+(4t+1)dv=0. The last equation is equivalent to (t24t)dv+(t4)vdt+(4t+1)dv=0,(t^2-4t)dv+(t-4)vdt+(4t+1)dv=0, and hence to (t2+1)dv=(t4)vdt.(t^2+1)dv=-(t-4)vdt.

It follows that dvv=(t4)dtt2+1,-\frac{dv}{v}=\frac{(t-4)dt}{t^2+1}, and consequently dvv=(t4)dtt2+1.-\int\frac{dv}{v}=\int\frac{(t-4)dt}{t^2+1}. We get that lnv=122tdtt2+14dtt2+1=12ln(t2+1)4arctant+lnC,-\ln|v|=\frac{1}{2}\int\frac{2tdt}{t^2+1}-4\int\frac{dt}{t^2+1}=\frac{1}{2}\ln(t^2+1)-4\arctan t+\ln |C|, and hence

8arctant=ln(t2+1)+2lnv+lnC1=ln(t2+1)v2C1.8\arctan t=\ln(t^2+1)+2\ln|v|+\ln |C_1|=\ln|(t^2+1)v^2C_1|.

It follows that (t2+1)v2C1=e8arctant.(t^2+1)v^2C_1=e^{8\arctan t}.

Since t=uv=x1y+2t=\frac{u}{v}=\frac{x-1}{y+2} and v=y+2,v=y+2, we have that

((x1y+2)2+1)(y+2)2C1=e8arctanx1y+2.((\frac{x-1}{y+2})^2+1)(y+2)^2C_1=e^{8\arctan \frac{x-1}{y+2}}.

We conclude that the general solution is the following:

((x1)2+(y+2)2)C1=e8arctanx1y+2.((x-1)^2+(y+2)^2)C_1=e^{8\arctan \frac{x-1}{y+2}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS