Given IVP:
The general solution of homogeneous equation
"y(x)=c_1+c_2x"Hence,
"G(x,s)=\\left\\{\\begin{matrix}\n c_1+c_2x,\\quad 0\\leq x\\leq s, \\\\\n c_3+c_4x,\\ \\quad s< x\\leq 1.\n\\end{matrix}\\right."Initial conditions give
"G(0,s)=c_1=0,\\quad G(1,s)=c_4=-c_3"So
"G(x,s)=\\left\\{\\begin{matrix}\n c_2x,\\quad 0\\leq x\\leq s, \\\\\n c_3(1-x),\\ \\quad s< x\\leq 1.\n\\end{matrix}\\right."The continuity of Green function gives
"G(x,s)=\\left\\{\\begin{matrix}\n x(s-1),\\quad 0\\leq x\\leq s, \\\\\n s(x-1),\\ \\quad s< x\\leq 1.\n\\end{matrix}\\right."The solution of DE
"y(x)=\\int_0^1G(x,s)f(s)ds""=\\int_0^xx(s-1)f(s)ds+\\int_x^1s(x-1)f(s)ds"
Comments
Leave a comment