dydz=z⋅tan(y)+sin(y)dydz−z⋅tan(y)=sin(y)
Then, when we compare the form to dydz+P⋅z=Q, we can identify that the integrating factor will be: I=e∫Pdy=e−∫tan(y)dy=eln(cos(y))=cos(y)
Then, we multiply the integrating factor I and proceed to solve the equation:
(cos(y))[dydz−z⋅tan(y)]=sin(y)cos(y)cos(y)dydz−z⋅sin(y)=sin(y)cos(y)dyd(z⋅cos(y))=sin(y)cos(y)⟺d(z⋅cos(y))=sin(y)cos(y)dy∫d(z⋅cos(y))=∫sin(y)cos(y)dyz⋅cos(y)=−21cos2(y)+C
We divide the last result by cos(y) to determine z:
z=C⋅sec(y)−21cos(y)
Comments