Question #233819
Use the integrating factor to solve the differential equation. dz/dy = z tan y + sin y
1
Expert's answer
2021-09-07T02:40:52-0400

dzdy=ztan(y)+sin(y)dzdyztan(y)=sin(y)\cfrac{dz}{dy}=z \cdot tan(y)+sin(y) \\ \cfrac{dz}{dy}-z \cdot tan(y)=sin(y)


Then, when we compare the form to dzdy+Pz=Q\cfrac{dz}{dy}+P \cdot z=Q, we can identify that the integrating factor will be: I=ePdy=etan(y)dy=eln(cos(y))=cos(y)I=e^{\int Pdy}=e^{-\int tan(y)dy}=e^{\ln(cos(y))}=cos(y)


Then, we multiply the integrating factor I and proceed to solve the equation:

(cos(y))[dzdyztan(y)]=sin(y)cos(y)cos(y)dzdyzsin(y)=sin(y)cos(y)ddy(zcos(y))=sin(y)cos(y)    d(zcos(y))=sin(y)cos(y)dyd(zcos(y))=sin(y)cos(y)dyzcos(y)=12cos2(y)+C\\ (cos(y))[\cfrac{dz}{dy}-z \cdot tan(y)]=sin(y)cos(y) \\ cos(y)\cfrac{dz}{dy}-z \cdot sin(y)=sin(y)cos(y) \\ \cfrac{d}{dy}(z \cdot cos(y))=sin(y)cos(y) \iff d(z \cdot cos(y))= sin(y)cos(y){dy} \\ \int d(z \cdot cos(y))=\int sin(y)cos(y){dy} \\ z \cdot cos(y)=-\frac{1}{2} cos^2(y)+C


We divide the last result by cos(y) to determine z:

z=Csec(y)12cos(y)z =C\cdot sec(y)-\cfrac{1}{2} cos(y)


In conclusion, we determine that z=Csec(y)cos(y)2z =C\cdot sec(y)-\cfrac{cos(y)}{2} .

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS