((D)2-(D')2-3D+3D')z=Sin(x-2y)
Auxiliary equation of(D2-D'2-3D+3D')z=0 is;
m2-12-3m+3*1=0
m2-3m+2=0
m2-2m-m+2=0
m(m-2)-1(m-2)=0
(m-2)(m-1)=0
m=2 or 1
Complementary function is "\\phi_1(y+x)+\\phi_2(y+2x)"
P.I="\\frac{1}{D^{2}-D'^{2}-3D+3D'}Sin(x-2y)"
Let f(D,D')=D2-D'2-3D+3D'
Now co-eff of x is 1=a(say)
And that of y is -2=b(say)
so that f(a,b)=f(1,-2)
=12-(-2)2-3(1)+3(-2)
=1-4-3-6
=-12 "\\not=" 0
P.I="\\frac{1}{f(a,b)}\\iint Sin \\ vdvdv" let x-2y=v
="\\frac{-1}{12}\\int -Cot \\ vdv=\\frac{1}{12}Sin\\ v"
="\\frac{1}{12}Sin(x-2y)"
Therefore the general solution is :
C.F+P.I
"=\\phi_1(y+x)+\\phi_2(y+2x)+\\frac{1}{12}Sin(x-2y)"
Comments
Leave a comment