eliminate the arbitrary constant using any method
13.x^2y^3\:+\:x^3y^5\:=\:C
"x^2y^3+x^3y^5=c"
Differentiating both sides w.r.t "x" , we get
"\\frac{d}{dx}(x^2y^3+x^3y^5)=\\frac{d}{dx}(c)\n\\\\\\Rightarrow \\frac{d}{dx}(x^2y^3)+\\frac{d}{dx}(x^3y^5)=0\n\\\\\\Rightarrow 2xy^3+x^2.3y^2\\frac{dy}{dx}+3x^2y^5+x^3.5y^4\\frac{dy}{dx}=0\n\\\\\\Rightarrow \\frac{dy}{dx}(3x^2y^2+5x^3y^4)+2xy^3+3x^2y^5=0\n\\\\\\Rightarrow \\frac{dy}{dx}=-\\frac{2xy^3+3x^2y^5}{3x^2y^2+5x^3y^4}"
Comments
Leave a comment