eliminate the arbitrary constant using any method
14.y\:=\:−2C_1e^{−3x}\:+\:C_2e^{4x}
Solution
If y(x) = −2C1e−3x + C2e4x  <=eq.1
then
y’(x) = 6C1e−3x + 4C2e4x  <= eq.2
y’’(x) = -18C1e−3x + 16C2e4x  <= eq.3
From 3* eq.1+ eq.2 => y’(x)+3 y(x) = 7 C2e4x     <= eq.4
From 3* eq.2+ eq.2 => 3 y’(x)+y’’(x) = 28 C2e4x     <= eq.5
From 4* eq.4-eq.5 => 4y’(x)+12y(x) - 3y’(x) - y’’(x) = 0  =>  y’’(x) – y’(x) – 12y(x) = 0
So the answer is y’’(x) – y’(x) – 12y(x) = 0
Comments
Leave a comment