Find the particular solution of the differential equation 8d2x/dt2 + 16dx/dt -5x =0, when x(0) = 16 and x'(0) = -8.
Given IVP:
"x(0)=16,\\quad x'(0)=-8"
The characteristic equation is as follows
"8k^2+16k-5=0"Roots:
"k_1=-1-\\sqrt{26}\/4,\\quad k_1=-1+\\sqrt{26}\/4"General solution of IVP:
"x(t)=Ae^{k_1t}+Be^{k_2t}=e^{-t}(Ae^{-\\sqrt{26}\/4t}+Be^{\\sqrt{26}\/4t})"The initial conditions give
"x(0)=A+B=16\\\\\nx'(0)=-(A+B)+\\sqrt{26}\/4(-A+B)=-8""A=-8\/13(-13+\\sqrt{26}), \\quad B=8\/13(13+\\sqrt{26})"Finally,
"x(t)=e^{-t}\\Big(-8\/13(-13+\\sqrt{26})e^{-\\sqrt{26}\/4t}\\\\+8\/13(13+\\sqrt{26})e^{\\sqrt{26}\/4t}\\Big)"
Comments
Leave a comment