Solve the differential equation 2y'''+ y''- 8y' - 4y = 7 - 2e-x - cos2 (2x).
The homogeneous equation
The characteristic equation
"r^2(2r+1)-4(2r+1)=0"
"(2r+1)(r+2)(r-2)=0"
"r_1=-\\dfrac{1}{2}, r_2=-2, r_3=2"
The general solution of the homogeneous differential equation is
"=\\dfrac{13}{2}-2e^{-x}-\\dfrac{1}{2}\\cos(4x)"
Find the particular solution of the nonhomogeneous differential equation
"y_p'=-Be^{-x}-4C\\sin(4x)+4D\\cos(4x)"
"y_p''=Be^{-x}-16C\\cos(4x)-16D\\sin(4x)"
"y_p'''=-Be^{-x}+64C\\sin(4x)-64D\\cos(4x)"
Substitute
"+Be^{-x}-16C\\cos(4x)-16D\\sin(4x)"
"+8Be^{-x}+32C\\sin(4x)-32D\\cos(4x)"
"-4A-4Be^{-x}-4C\\cos(4x)-4D\\sin(4x)"
"=\\dfrac{13}{2}-2e^{-x}-\\dfrac{1}{2}\\cos(4x)"
"A=-\\dfrac{13}{8}"
"B=-\\dfrac{2}{3}"
"D=8C"
"C=\\dfrac{1}{2600}"
"D=\\dfrac{1}{325}"
Then
The general solution of the nonhomogeneous differential equation is
"-\\dfrac{13}{8}-\\dfrac{2}{3}e^{-x}+\\dfrac{1}{2600}\\cos(4x)+\\dfrac{1}{325}\\sin(4x)"
Comments
Leave a comment