z2(p2 + q2 + 1) = k2
"f_p=2pz^2, f_q=2qz^2,"
Charpit's Method
Then
"\\dfrac{dp}{p}=\\dfrac{dq}{q}"
"\\int\\dfrac{dp}{p}=\\int\\dfrac{dq}{q}"
"\\ln|p|=\\ln|q|+\\ln a"
"p=qa"
Substitute
"q=\\sqrt{\\dfrac{k^2-z^2}{z^2(a^2+1)}}"
"p=a\\sqrt{\\dfrac{k^2-z^2}{z^2(a^2+1)}}"
"dz=a\\sqrt{\\dfrac{k^2-z^2}{z^2(a^2+1)}}dx+\\sqrt{\\dfrac{k^2-z^2}{z^2(a^2+1)}}dy"
"z\\sqrt{\\dfrac{a^2+1}{k^2-z^2}}dz=adx+dy"
Integrate
"\\sqrt{a^2+1}\\sqrt{k^2-z^2}+ax+y+b=0"
Comments
Leave a comment