"\ud835\udc37^ 2 +3DD'+2 \ud835\udc37'^2=(D+D')(D+2D')"
"(\ud835\udc37^ 2 +3DD'+ 2\ud835\udc37'^2)\ud835\udc67 =(D+D')(D+2D')z"
"(D+D')(D+2D')z=12xy"
The auxiliary equation of the given equation is
"k_1=-1, k_2=-2"
Than the complementary function of the given equation is
Than partial integral
"=\\dfrac{1}{D(1+\\dfrac{D'}{D})D(1+\\dfrac{2D'}{D})}(12xy)"
"=\\dfrac{1}{D^2}\\bigg[1+\\dfrac{D'}{D}\\bigg]^{-1}\\bigg[1+\\dfrac{2D'}{D}\\bigg]^{-1}(12xy)"
"\\dfrac{1}{1+t}=1-t+t^2-t^3+t^4-t^5+..., |t|<1"
"P.I.=\\dfrac{1}{D^2}\\bigg(1-\\dfrac{D'}{D}+...\\bigg)\\bigg(1-\\dfrac{2D'}{D}+...\\bigg)(12xy)"
"=\\dfrac{1}{D^2}\\bigg(1-\\dfrac{3D'}{D}+\\dfrac{2D'^2}{D^2}+...\\bigg)(12xy)"
"=\\dfrac{1}{D^2}\\bigg(12xy-\\dfrac{3}{D}\\dfrac{\\partial}{\\partial y}(12xy)"
"+\\dfrac{2}{D^2}\\dfrac{\\partial^2}{\\partial y^2}(12xy)+...\\bigg)"
"=\\dfrac{1}{D^2}\\bigg(12xy-\\dfrac{36}{D}x+\\dfrac{2}{D^2}(0)+...\\bigg)"
"=\\dfrac{1}{D^2}\\bigg(12xy-36\\int xdx\\bigg)"
"=\\dfrac{1}{D}\\bigg(\\int(12xy-18x^2)dx\\bigg)"
"=\\dfrac{1}{D}(6x^2y-6x^3)=\\int(6x^2y-6x^3)dx"
"=2x^3y-\\dfrac{3}{2}x^4"
"P.I.=2x^3y-\\dfrac{3}{2}x^4"
"z=\\varphi_1(y-x)+\\varphi_2(y-2x)+2x^3y-\\dfrac{3}{2}x^4"
where "\\varphi_1" and "\\varphi_2" are arbitrary functions.
Comments
Leave a comment