Question #218267

Solve (d^2y)/(dx^2)+y=sec^2x


1
Expert's answer
2021-07-20T09:29:30-0400

d2ydx2+y=sec2(x){d^2y\over dx^2}+y=sec^2(x)

But sec2(x)=tan2(x)+1sec^2(x)=tan^2(x)+1

Rewriting the differential equation, we have

d2ydx2+y=tan2(x)+1......................(i){d^2y\over dx^2}+y=tan^2(x)+1......................(i)

The corresponding homogenous linear equation is

d2ydx2+y=0........................(ii){d^2y\over dx^2}+y=0........................(ii)

To solve this homogenous linear equation (ii)(ii) ,Find the roots of characteristic equation

k2+1=0    k^2+1=0 \implies k1=ik_1=-i or k2=ik_2=i

The two roots of the characteristic equation are purely imaginary

y(x)=C1sin(xk1)+C2cos(xk2)\therefore y(x)=C_1sin(x|k_1|)+C_2cos(x|k_2|)

    y(x)=C1sin(x)+C2cos(x)...................(iii)\implies y(x)=C_1sin(x)+C_2cos(x)...................(iii)

Equation (iii)(iii) is our general solution

Now we should solve the inhomogeneous equation (i)(i) Using variation of parameters method

Suppose C1C_1 is function of xx and C2C_2 is also a function of xx

The general solution is:

    y(x)=C1(x)sin(x)+C2(x)cos(x).................(iv)\implies y(x)=C_1(x)sin(x)+C_2(x)cos(x).................(iv)

Where C1(x)C_1(x) and C2(x)C_2(x) by method of variation of parameters ,we find the solution from the system

y1(x)ddxC1(x)+y2(x)ddxC2(x)=0y_1(x){d\over dx}C_1(x)+y_2(x){d\over dx}C_2(x)=0


ddxC1(x)ddxy1(x)+ddxC2(x)ddxy2(x)=f(x){d\over dx}C_1(x){d\over dx}y_1(x)+{d\over dx}C_2(x){d\over dx}y_2(x)=f(x)


Where y1(x)y_1(x) and y2(x)y_2(x) are linearly independent solutions of linear Ordinary differential equations and f(x)f(x) is the free term and are given as

y1(x)=sin(x)y_1(x)=sin(x) , y2(x)=cos(x)y_2(x)=cos(x) and f(x)=tan2(x)+1f(x)=tan^2(x)+1

Substituting to the system above, we have

sin(x)ddxC1(x)+cos(x)ddxC2(x)=0sin(x){d\over dx}C_1(x)+cos(x){d\over dx}C_2(x)=0


ddxC1(x)ddxsin(x)+ddxC2(x)ddxcos(x)=tan2(x)+1{d\over dx}C_1(x){d\over dx}sin(x)+{d\over dx}C_2(x){d\over dx}cos(x)=tan^2(x)+1


But ddxsin(x)=cos(x){d\over dx}sin(x)=cos (x) and ddxcos(x)=sin(x){d\over dx}cos(x)=-sin(x)

Substituting to our system, we get:

sin(x)ddxC1(x)+cos(x)ddxC2(x)=0sin(x){d\over dx}C_1(x)+cos(x){d\over dx}C_2(x)=0


cos(x)ddxC1(x)sin(x)ddxC2(x)=tan2(x)+1cos(x){d\over dx}C_1(x)-sin(x){d\over dx}C_2(x)=tan^2(x)+1

Solving the system simultaneously, We get

ddxC1(x)=1cos(x){d\over dx}C_1(x)={1\over cos(x)} and ddxC2(x)=sin(x)cos2(x){d\over dx}C_2(x)=-{sin(x)\over cos^2(x)}

let's solve ddxC1(x)=1cos(x){d\over dx}C_1(x)={1\over cos(x)} and ddxC2(x)=sin(x)cos2(x){d\over dx}C_2(x)=-{sin(x)\over cos^2(x)}

ddxC1(x)=1cos(x)    dC1(x)=dxcos(x){d\over dx}C_1(x)={1\over cos(x)} \implies dC_1(x)={dx\over cos(x)}

Integrating both sides we have

dC1(x)=dxcos(x)    C1(x)=C3log(sin(x)1)2+log(sin(x)+1)2\int dC_1(x)=\int {dx\over cos(x)}\implies C_1(x)=C_3-{log(sin(x)-1)\over 2}+{log(sin(x)+1)\over 2}

ddxC2(x)=sin(x)cos2(x)    dC2(x)=sin(x)cos2(x)dx{d\over dx}C_2(x)=-{sin(x)\over cos^2(x)} \implies dC_2(x)=-{sin(x)\over cos^2(x)}dx

Integrating both sides we have

dC2(x)=sin(x)cos2(x)dx    C2(x)=C41cos(x)\int dC_2(x)=-\int{sin(x)\over cos^2(x)}dx\implies C_2(x)=C_4-{1\over cos(x)}

Now, substitute C1(x)C_1(x) and C2(x)C_2(x) to the general solution (iv)(iv)

y(x)=C1(x)sin(x)+C2(x)cos(x)y(x)=C_1(x)sin(x)+C_2(x)cos(x)


=(C3log(sin(x)1)2+log(sin(x)+1)2)sin(x)+(C41cos(x))(x)cos(x)=(C_3-{log(sin(x)-1)\over 2}+{log(sin(x)+1)\over 2})sin(x)+(C_4-{1\over cos(x)})(x)cos(x)


y(x)=C2cos(x)+(C1log(sin(x)1)2+log(sin(x)+1)2)sin(x)1\therefore y(x)=C_2cos(x)+(C_1-{log(sin(x)-1)\over 2}+{log(sin(x)+1)\over 2})sin(x)-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS