(a) Solve the separable equation
dxdy(x)+4xy(x)=8x:
Solve for dxdy(x): :
dxdy(x)=−4(−2x+xy(x)) Simplify:
dxdy(x)=x(−4y(x)+8)
Divide both sides by −4y(x)+8:
−4y(x)+8dxdy(x)=x
Integrate both sides with respect to x:
∫−4y(x)+8dxdy(x)dx=∫xdx
Evaluating this integrals:
−41log(−4y(x)+8)=2x2+c1 where c1 is an arbitrary constant
Solve for y(x):
y(x)=−41e−2(x2+2c1)+2 By simplifying the arbitrary constants, we have:
y(x)=−41e−2(x2+c1)+2
(b)
(6xy+2y2−5)dx+(3x2+4xy−6)dy=0y(1)=2 The given differential equation is of the form:
Mdx+Ndy=0 With:
M=6xy+2y2−5 and N=3x2+4xy−6 We proceed to check the exactness of the two equations. For exactness,
∂y∂M=∂x∂N Thus:
∂y∂M=6x+4y=∂x∂N We then proceed to solve the equation.
Φx=∫(6xy+2y2−5)dx=3x2y+2xy2−5xΦy=∫(3x2+4xy−6)dy=3x2y+2xy2−6y The general solution of the DE is:
3x2y+2xy2−5x−6y=c Evaluating the general solution using the IVP y(1)=2 :
3(1)2(2)+2(1)(2)2−5(1)−6(2)=c6+8−5−12=c∴c=−3 Thus the solution is:
3x2y+2xy2−5x−6y=−3
Comments