Question #218932

solve


dy/dx+4xy=8x

(6xy+2y2-5)dx+(3x2+4xy-6)dy=0 y(1)=2


1
Expert's answer
2021-07-28T15:48:57-0400

(a) Solve the separable equation


dy(x)dx+4xy(x)=8x:\frac{d y(x)}{d x}+4 x y(x)=8x :


Solve for dy(x)dx:\frac{d y(x)}{d x} : :

dy(x)dx=4(2x+xy(x))\frac{d y(x)}{d x}=-4(-2 x+x y(x))

Simplify:


dy(x)dx=x(4y(x)+8)\frac{d y(x)}{d x}=x(-4 y(x)+8)


Divide both sides by 4y(x)+8:-4 y(x)+8:


dy(x)dx4y(x)+8=x\frac{\frac{d y(x)}{d x}}{-4 y(x)+8}=x


Integrate both sides with respect to x:\boldsymbol{x}:


dy(x)dx4y(x)+8dx=xdx\int \frac{\frac{d y(x)}{d x}}{-4 y(x)+8} d x= \int x d x


Evaluating this integrals:


14log(4y(x)+8)=x22+c1-\frac{1}{4} \log (-4 y(x)+8)=\frac{x^{2}}{2}+c_{1}

where c1c_{1} is an arbitrary constant


Solve for y(x):y(x):


y(x)=14e2(x2+2c1)+2y(x)=-\frac{1}{4} e^{-2\left(x^{2}+2 c_{1}\right)}+2

By simplifying the arbitrary constants, we have:


y(x)=14e2(x2+c1)+2y(x)=-\frac{1}{4} e^{-2\left(x^{2}+c_{1}\right)}+2

(b)


(6xy+2y25)dx+(3x2+4xy6)dy=0y(1)=2(6xy+2y^2-5)dx+(3x^2+4xy-6)dy=0 \qquad y(1)=2

The given differential equation is of the form:


Mdx+Ndy=0Mdx + Ndy =0

With:


M=6xy+2y25 and N=3x2+4xy6M = 6xy+2y^2-5 \text{ and } N= 3x^2+4xy-6

We proceed to check the exactness of the two equations. For exactness,


My=Nx\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}

Thus:


My=6x+4y=Nx\frac{\partial M}{\partial y}=6x+4y=\frac{\partial N}{\partial x}

We then proceed to solve the equation.


Φx=(6xy+2y25)dx=3x2y+2xy25xΦy=(3x2+4xy6)dy=3x2y+2xy26y\Phi_x = \int(6xy+2y^2-5)dx = 3x^2y+2xy^2-5x\\ \Phi_y= \int (3x^2+4xy-6)dy= 3x^2y+2xy^2-6y

The general solution of the DE is:


3x2y+2xy25x6y=c3x^2y+2xy^2-5x-6y=c

Evaluating the general solution using the IVP y(1)=2y(1)=2 :


3(1)2(2)+2(1)(2)25(1)6(2)=c6+8512=cc=33(1)^2(2)+2(1)(2)^2-5(1)-6(2)=c\\ 6+8-5-12=c\\ \therefore c=-3

Thus the solution is:


3x2y+2xy25x6y=33x^2y+2xy^2-5x-6y=-3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS