"\\sum_{k=1}^7y_k=95"
"\\sum_{k=1}^7y_kcos(x_k)=-4.5"
"\\sum_{k=1}^7y_ksin(x_k)=-0.866"
"\\sum_{k=1}^7y_kcoc(2x_k)=12.5"
"\\sum_{k=1}^7y_ksin(2x_k)=2.598"
we can get the values of "a_i" and "b_i" as follows:
"a_0={1\\over 7}\\times95=13.57"
"a_1={2\\over 7}\\times(-4.5)=-1.29"
"a_2={2\\over 7}\\times 12.5=3.57"
"b_1={2\\over 7}\\times(-0.866)=-0.25"
"b_2={2\\over 7}\\times 2.598=0.74"
Substituting those values into Fourier series
"f(x)=a_0+\\sum_{n=1}^\\infin(a_ncos(nx)+b_nsin(nx))" gives
"f(x)=a_0+a_1cos(x)+a_2cos(2x)+b_1sin(x)+b_2sin(2x)"
"\\therefore y=13.57-1.29cos(x)+3.75cos(2x)-0.25sin(x)+0.74sin(2x)"
Comments
Leave a comment