Question1
The conditions in a certain electrical circuit is represented by the following differential equation:
1/50Q’’ +Q’ +8q =50 Cos30t
1. Determine an expression for q in term of t
2. Determine an expression for the current I (hint I =dq/dt)
3. Determine the amplitude and the frequency of the steady state current.
Question2
Find the general solution of the following DE using the method of undetermined coefficients :
Y’’ +2y’+5y = 34sinxcosx
Question1
1) "\\frac{1}{{50}}q'' + q' + 8q = 50\\cos 30t"
"q'' + 50q' + 400q = 2500\\cos 30t"
characteristic equation:
"{k^2} + 50k + 400 = 0"
"D = 2500 - 1600 = 900"
"{k_1} = \\frac{{ - 50 - 30}}{2} = - 40"
"{k_2} = \\frac{{ - 50 + 30}}{2} = - 10"
Then the general solution of the homogeneous equation is
"{q_0} = {C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}}"
We will seek a particular solution in the form
"\\widetilde q = A\\cos 30t + B\\sin 30t \\Rightarrow {\\widetilde q^\\prime } = - 30A\\sin 30t + 30B\\cos 30t \\Rightarrow {\\widetilde q^{\\prime \\prime }} = \\\\=- 900A\\cos 30t - 900B\\sin 30t"
Substitute the obtained values into the original equation:
"- 900A\\cos 30t - 900B\\sin 30t - 1500A\\sin 30t + 1500B\\cos 30t + 400A\\cos 30t + 400B\\sin 30t = 2500\\cos 30t"
"( - 900A + 1500B + 400A)\\cos 30t + ( - 900B - 1500A + 400B)\\sin 30t = 2500\\cos 30t"
"\\left\\{ \\begin{array}{l}\n - 500A + 1500B = 2500\\\\\n - 1500A - 500B = 0\n\\end{array} \\right. \\Rightarrow"
"\\Rightarrow \\left\\{ {\\begin{matrix}\n{A = - \\frac{1}{2}}\\\\\n{B = \\frac{3}{2}}\n\\end{matrix}} \\right."
So,
"\\widetilde q = - \\frac{1}{2}\\cos 30t + \\frac{3}{2}\\sin 30t"
"q(t) = {q_0} + \\widetilde q = {C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}} - \\frac{1}{2}\\cos 30t + \\frac{3}{2}\\sin 30t"
Answer: "q(t) = {C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}} - \\frac{1}{2}\\cos 30t + \\frac{3}{2}\\sin 30t"
2)
"I(t) = \\frac{{dq}}{{dt}} = {\\left( {{C_1}{e^{ - 40t}} + {C_2}{e^{ - 10t}} - \\frac{1}{2}\\cos 30t + \\frac{3}{2}\\sin 30t} \\right)^\\prime } =\\\\= - 40{C_1}{e^{ - 40t}} - 10{C_2}{e^{ - 10t}} + 15\\sin 30t + 45\\cos 30t"
Answer: "I(t) = - 40{C_1}{e^{ - 40t}} - 10{C_2}{e^{ - 10t}} + 15\\sin 30t + 45\\cos 30t"
3) The steady state solution is "\\widetilde q = - \\frac{1}{2}\\cos 30t + \\frac{3}{2}\\sin 30t = \\sqrt {\\frac{5}{2}} \\sin \\left( {30t - arctan\\frac{1}{3}} \\right)"
So, the amplitude is "A = \\sqrt {\\frac{5}{2}}" , the frequency is "f =\\frac{ 30}{2\\pi}"
Answer: "A = \\sqrt {\\frac{5}{2}}" , "f = \\frac{30}{2 \\pi}"
Question 2
"y'' + 2y' + 5y = 34\\sin x\\cos x"
"y'' + 2y' + 5y = 17\\sin 2x"
characteristic equation:
"{k^2} + 2k + 5 = 0"
"D = 4 - 20 = - 16"
"{k_1} = \\frac{{ - 2 - 4i}}{2} = - 1 - 2i"
"{k_2} = \\frac{{ - 2 + 4i}}{2} = - 1 + 2i"
Then the general solution of the homogeneous equation is
"{y_0} = {e^{ - x}}\\left( {{C_1}\\cos 2x + {C_2}\\sin 2x} \\right)"
We will seek a particular solution in the form
"\\widetilde y = A\\sin 2x + B\\cos 2x \\Rightarrow {\\widetilde y^\\prime } = 2A\\cos 2x - 2B\\sin 2x \\Rightarrow {\\widetilde y^{\\prime \\prime }} = - 4A\\sin 2x - 4B\\cos 2x"
Substitute the obtained values into the original equation:
"- 4A\\sin 2x - 4B\\cos 2x + 4A\\cos 2x - 4B\\sin 2x + 5A\\sin 2x + 5B\\cos 2x = 17\\sin 2x"
"(A - 4B)\\sin 2x + (4A + B)\\cos 2x = 17\\sin 2x"
"\\left\\{ \\begin{array}{l}\nA - 4B = 17\\\\\n4A + B = 0\n\\end{array} \\right. \\Rightarrow A = 1,B = - 4"
So,
"\\widetilde y = \\sin 2x - 4\\cos 2x"
"y = {y_0} + \\widetilde y = {e^{ - x}}\\left( {{C_1}\\cos 2x + {C_2}\\sin 2x} \\right) + \\sin 2x - 4\\cos 2x"
Answer: "y = {e^{ - x}}\\left( {{C_1}\\cos 2x + {C_2}\\sin 2x} \\right) + \\sin 2x - 4\\cos 2x"
Comments
In question1 How to get D =2500−1600=900? can you explain in detail
Leave a comment