We know that the operator "D" means a derivative "D=\\frac{d}{dt}" , but for now we will assume that this is just another letter and solve the specified system of equations by the "addition" method.
"\\left\\{\\begin{array}{l}\n\\left.\\left(D-2\\right)x+Dy=10\\sin2t\\right|\\times\\left(D\\right)\\\\[0.3cm]\n\\left.Dx+\\left(D+2\\right)y=0\\right|\\times\\left(D-2\\right)\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\nD\\left(D-2\\right)x+D^2y=D\\left(10\\sin2t\\right)\\\\[0.3cm]\n\\text{Subtract the lower one from the upper equation}\\\\[0.3cm]\nD\\left(D-2\\right)x+\\left(D^2-4\\right)y=0\n\\end{array}\\right.\\\\[0.3cm]\\\\[0.3cm]\n\\left(\\cancel{D^2}-\\cancel{D^2}+4\\right)y=D\\left(10\\sin2t\\right)\\\\[0.3cm]\n4y=\\frac{d}{dt}\\left(10\\sin2t\\right)=20\\cos2t\\to\\boxed{y(t)=5\\cos2t}\\\\[0.3cm]\n\\text{To find the function} \\quad x(t), \\text{go back to the original system.}\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\n\\left.\\left(D-2\\right)x+Dy=10\\sin2t\\right|\\times\\left(D+2\\right)\\\\[0.3cm]\n\\left.Dx+\\left(D+2\\right)y=0\\right|\\times\\left(D\\right)\n\\end{array}\\right.\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\n\\left(D^2-4\\right)x+D\\left(D+2\\right)y=\\left(D+2\\right)\\left(10\\sin2t\\right)\\\\[0.3cm]\n\\text{Subtract the lower one from the upper equation}\\\\[0.3cm]\nD^2x+D\\left(D+2\\right)y=0\n\\end{array}\\right.\\\\[0.3cm]\\\\[0.3cm]\n\\left(\\cancel{D^2}-\\cancel{D^2}-4\\right)x=\\left(D+2\\right)\\left(10\\sin2t\\right)\\\\[0.3cm]\n-4x=\\left(\\frac{d}{dt}+2\\right)\\left(10\\sin2y\\right)=20\\cos2t+20\\sin2t\\to\\\\[0.3cm]\n\\boxed{x(t)=-5\\cos2t-5\\sin2t}\\\\[0.3cm]" ANSWER
"\\left\\{\\begin{array}{l}\nx(t)=-5\\cos2t-5\\sin2t\\\\[0.3cm]\ny(y)=5\\cos2t\n\\end{array}\\right."
Comments
Leave a comment