Question #216747

Let an electrical circuit be governed by the following system of differential equation where i1,i2,i3 are the current in each branch of electrical circuit.find the current i1,i2,i3 internship branch of the electrical circuit by using diagonalisationmethod i1'=2i1+2i2+i3;i2'=i1+3i2+i3; i3'=i1+2i2+2i3


1
Expert's answer
2021-07-14T06:27:07-0400

Solution

Let x(t)=(i1(t)i2(t)i3(t))x(t)=\left(\begin{matrix}i1(t)\\i2(t)\\i3(t)\\\end{matrix}\right)  and A=(221131122)A=\left(\begin{matrix}2&2&1\\1&3&1\\1&2&2\\\end{matrix}\right)

Then the system of DE is x’ = Ax

Let’s find the eigenvalues and eigenvectors of matrix A.

det(A-λI) = 0, where I is a identity matrix.

2λ2113λ1122λ=λ3+7λ211λ+5\left|\begin{matrix}2-\lambda&2&1\\1&3-\lambda&1\\1&2&2-\lambda\\\end{matrix}\right|=-\lambda^3+7\lambda^2-11\lambda+5

3+7λ2-11λ+5 = - (λ-5)(λ-1)2 = 0  


So roots or eigenvalues are λ1 = 5, λ2,3 = 1

For λ=1 the associated eigenvectors satisfy

(221131122)(xyz)=(xyz)\left(\begin{matrix}2&2&1\\1&3&1\\1&2&2\\\end{matrix}\right)\left(\begin{matrix}x\\y\\z\\\end{matrix}\right)=\left(\begin{matrix}x\\y\\z\\\end{matrix}\right)

from which x+2y+z = 0, x+2y+z = 0, x+2y+z = 0

and we’ll get two eigenvectors v2=(311), v3=(111)v_2=\left(\begin{matrix}3\\-1\\-1\\\end{matrix}\right),\ v_3=\left(\begin{matrix}1\\-1\\1\\\end{matrix}\right)

For λ=1 the associated eigenvectors satisfy

(221131122)(xyz)=5(xyz)\left(\begin{matrix}2&2&1\\1&3&1\\1&2&2\\\end{matrix}\right)\left(\begin{matrix}x\\y\\z\\\end{matrix}\right)=5\left(\begin{matrix}x\\y\\z\\\end{matrix}\right)

from which -3x+2y+z = 0, x-2y+z = 0, x+2y-3z = 0

and eigenvector v1=(111)v_1=\left(\begin{matrix}1\\1\\1\\\end{matrix}\right)

From these eigenvectors as columns matrix S=(131111111)S=\left(\begin{matrix}1&3&1\\1&-1&-1\\1&-1&1\\\end{matrix}\right)  transform matrix A to diagonal

D = S-1AS, D=(500010001)D=\left(\begin{matrix}5&0&0\\0&1&0\\0&0&1\\\end{matrix}\right)

Thus A = SDS-1 system of DE may be rewritten:

x’(t) = SDS-1   =>  (S-1x(t))’ = DS-1x(t) or for y(t) = S-1x(t) y’(t) = Dy(t) with diagonal matrix D.

Therefore y(t)=(ae5tbetcet)y(t)=\left(\begin{matrix}ae^{5t}\\be^t\\ce^t\\\end{matrix}\right)  with arbitrary constants a,b,c.

x(t)=Sy(t)=(ae5t+3bet+cetae5tbetcetae5tbet+cet)x(t)=Sy(t)=\left(\begin{matrix}ae^{5t}+3be^t+ce^t\\ae^{5t}-be^t-ce^t\\ae^{5t}-be^t+ce^t\\\end{matrix}\right)

Finally i1(t) = ae5t+3bet+cet, i2(t) = ae5t-bet-cet, i3(t) = ae5t-bet+cet


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS