"p-3q = \\sin x+\\cos y"
"p- \\sin x=3q +\\cos y=a (say),"where "a" is an arbitrary constant.
We have
"\\begin{cases}\n p-\\sin x=a \\\\\n 3q+\\cos y=a\n\\end{cases}=> =\\begin{cases}\n \\dfrac{\\partial z}{\\partial x}=a+\\sin x \\\\\n \\dfrac{\\partial z}{\\partial y}=\\dfrac{1}{3}(a-\\cos y)\n\\end{cases}"
"dz=(a+\\sin x)dx+(\\dfrac{1}{3}(a-\\cos y))dy"
"z=ax-\\cos x+\\dfrac{1}{3}ay-\\dfrac{1}{3}\\sin y-b" Or
"z=a(x-\\dfrac{1}{3}y)-(\\cos x+\\dfrac{1}{3}\\sin y+b)"
Comments
Leave a comment