Solve for x and y in the following set of simultaneous differential equations by using D-operator methods: (D-2)x + Dy = 10sin2t
Dx + (D+2)y = 0
Let's write the given system of ODE in the matrix form
"\\begin{pmatrix}\nD-2 & D\\\\\nD & D+2\n\\end{pmatrix}\n\\begin{pmatrix} x\\\\ y \\end{pmatrix} = \\begin{pmatrix} 10 \\sin 2t\\\\ 0 \\end{pmatrix}"
Where "D" is the differential operator "D=\\frac{d}{dt}".
The determinant of this system is "(D-2)(D+2)=D^2-4" is invertible, therefore the matrix of the system is invertible too.
For arbitrary invertible matrix 2x2 we have
"\\begin{pmatrix}\na & b\\\\\nc & d\n\\end{pmatrix}^{-1} = \\frac{1}{ad-bc}\\begin{pmatrix}\nd & -c\\\\\n-b & a\n\\end{pmatrix}"
Therefore,
"\\begin{pmatrix}\nD-2 & D\\\\\nD & D+2\n\\end{pmatrix}^{-1}=-\\frac{1}{4}\\begin{pmatrix}\nD+2 & -D\\\\\n-D & D-2\n\\end{pmatrix}"
and
"\\begin{pmatrix} x\\\\ y \\end{pmatrix} =\\begin{pmatrix}\nD-2 & D\\\\\nD & D+2\n\\end{pmatrix}^{-1}\\begin{pmatrix} 10 \\sin 2t\\\\ 0 \\end{pmatrix} =-\\frac{1}{4}\\begin{pmatrix}\nD+2 & -D\\\\\n-D & D-2\n\\end{pmatrix}\\begin{pmatrix} 10 \\sin 2t\\\\ 0 \\end{pmatrix}"
"x=-\\frac{1}{4}(D+2)10 \\sin 2t=-\\frac{1}{4}(20\\cos2t+20\\sin 2t)=-5\\cos2t-5\\sin 2t"
"y=-\\frac{1}{4}D(10\\sin 2t)=-5 \\cos 2t"
Answer. "x=-5\\cos2t-5\\sin 2t", "y=-5 \\cos 2t".
Comments
Leave a comment