Question #217807

Solve for x and y in the following set of simultaneous differential equations by using D-operator methods: (D-2)x + Dy = 10sin2t

Dx + (D+2)y = 0


1
Expert's answer
2021-07-26T07:55:52-0400

Let's write the given system of ODE in the matrix form

(D2DDD+2)(xy)=(10sin2t0)\begin{pmatrix} D-2 & D\\ D & D+2 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 10 \sin 2t\\ 0 \end{pmatrix}

Where DD is the differential operator D=ddtD=\frac{d}{dt}.

The determinant of this system is (D2)(D+2)=D24(D-2)(D+2)=D^2-4 is invertible, therefore the matrix of the system is invertible too.


For arbitrary invertible matrix 2x2 we have

(abcd)1=1adbc(dcba)\begin{pmatrix} a & b\\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc}\begin{pmatrix} d & -c\\ -b & a \end{pmatrix}

Therefore,

(D2DDD+2)1=14(D+2DDD2)\begin{pmatrix} D-2 & D\\ D & D+2 \end{pmatrix}^{-1}=-\frac{1}{4}\begin{pmatrix} D+2 & -D\\ -D & D-2 \end{pmatrix}

and

(xy)=(D2DDD+2)1(10sin2t0)=14(D+2DDD2)(10sin2t0)\begin{pmatrix} x\\ y \end{pmatrix} =\begin{pmatrix} D-2 & D\\ D & D+2 \end{pmatrix}^{-1}\begin{pmatrix} 10 \sin 2t\\ 0 \end{pmatrix} =-\frac{1}{4}\begin{pmatrix} D+2 & -D\\ -D & D-2 \end{pmatrix}\begin{pmatrix} 10 \sin 2t\\ 0 \end{pmatrix}


x=14(D+2)10sin2t=14(20cos2t+20sin2t)=5cos2t5sin2tx=-\frac{1}{4}(D+2)10 \sin 2t=-\frac{1}{4}(20\cos2t+20\sin 2t)=-5\cos2t-5\sin 2t

y=14D(10sin2t)=5cos2ty=-\frac{1}{4}D(10\sin 2t)=-5 \cos 2t


Answer. x=5cos2t5sin2tx=-5\cos2t-5\sin 2t, y=5cos2ty=-5 \cos 2t.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS