w(2v−w+1)dv+v(3v−4w+3)dw=0
(2vw−w2+w)dv+(3v2−4vw+3v)dw=0
M(v,w)=(2vw−w2+w)⟹∂w∂M(v,w)=2v−2w+1
N(v,w)=(3v2−4vw+3v)⟹∂v∂N(v,w)=6v−4w+3
The differential equation is not exact since ∂w∂M(v,w)=∂v∂N(v,w)
There is no integrating factor of the form p(v) or p(w)
Let's try another method
(2vw−w2+w)dv+(3v2−4vw+3v)dw=0
(2vw−w2+w)dvdv+(3v2−4vw+3v)dvdw=0
(2vw−w2+w)+(3v2−4vw+3v)dvdw=0
(2vw−w2+w)+(3v2dvdw−4vwdvdw+3vdvdw)=0
2vw−w2+w+3v2dvdw−4vwdvdw+3vdvdw=0..........(i)
Let u=vw⟹dvdu=w+vdvdw⟹dvdw=vdvdu−v2u and Substituting this to equation (i)
2vvu−(vu)2+(vu)+3v2(vdvdu−v2u)−4vvu(vdvdu−v2u)+3v(vdvdu−v2u)=0
The Variables cannot be separated further
Lets check if the differential equation is homogenous
(2vw−w2+w)+(3v2−4vw+3v)dvdw=0
(3v2−4vw+3v)dvdw=−(2vw−w2+w)
dvdw=−(3v2−4vw+3v)(2vw−w2+w)
The differential equation is not homogenous
∴ The differential equation has no solution
Comments