Solve for the equation of the family of curves in which the slope is (5βπ₯)
(π¦β3)
Determine the type of the curve and the equation of a member passing through
(2 β 1).
"\\displaystyle\n\\frac{\\mathrm{d}y}{\\mathrm{d}x} = \\frac{5 - x}{y - 3} \\\\\n\ny - 3 \\mathrm{d}y = 5 - x \\mathrm{d}x\\\\\n\n\\int y - 3 \\mathrm{d}y = \\int 5 - x \\mathrm{d}x\\\\\n\n\\frac{y^2}{2} - 3y = 5x - \\frac{x^2}{2} + C\\\\\n\n\\textsf{At}\\,\\, (2, -1)\\\\\n\n\\frac{(-1)^2}{2} - 3(-1) = 5(2) - \\frac{2^2}{2} + C\\\\\n\n\\frac{7}{2} = 8 + C\\\\\n\nC = -\\frac{9}{2}\\\\\n\n\\frac{y^2}{2} - 3y = 5x - \\frac{x^2}{2} -\\frac{9}{2}\\\\\n\nx^2 + y^2 - 10x - 6y + 9 = 0\\\\\n\n(x - 5)^2 + (y - 3)^2 = 25 + 9 - 9 = 25\\\\\n\n\\textsf{This type of curve passing}\\\\\n\\textsf{through}\\,\\,(2,-1)\\,\\, \\textsf{is a circle}\\\\\\textsf{whose centre is}\\,\\, (5,3)\\\\\n\\textsf{and radius is}\\,\\,5."
Comments
Leave a comment