Question #208896

EXACT DIFFERENTIAL EQUATIONS


Test for exactness and find the general solution:

1. (2x + 4y − 5)dx + (6y + 4x − 1)dy = 0

2. (y + 2xy3)dx + (1+ 3x2y2 + x)dy = 0

3. 3x2ydx + (x3 + 2y4)dy = 0

4. (1/y)dx - (x/y2)dy = 0

5. (4x3 − y3)dx − 3xy2dy = 0


1
Expert's answer
2021-06-21T14:13:45-0400

1.


(2x+4y5)dx+(6y+4x1)dy=0(2x + 4y − 5)dx + (6y + 4x − 1)dy = 0

Qx=4,Py=4\dfrac{\partial Q}{\partial x}=4, \dfrac{\partial P}{\partial y}=4

The given equation is exact because the partial derivatives are the same:


Qx=4=Py\dfrac{\partial Q}{\partial x}=4=\dfrac{\partial P}{\partial y}

We have the following system of differential equations to find the function u(x,y)u(x, y)


{ux=2x+4y5uy=6y+4x1\begin{cases} \dfrac{\partial u}{\partial x}=2x + 4y − 5 \\ \\ \dfrac{\partial u}{\partial y}=6y + 4x − 1 \end{cases}

u(x,y)=(2x+4y5)dx=x2+4xy5x+φ(y)u(x, y)=\int (2x + 4y − 5)dx=x^2+4xy-5x+\varphi (y)

uy=4x+φ(y)=6y+4x1\dfrac{\partial u}{\partial y}=4x+\varphi' (y)=6y + 4x − 1

φ(y)=6y1\varphi' (y)=6y − 1

The general solution of the exact differential equation is given by


x2+4xy5x+3y2y=Cx^2+4xy-5x+3y^2-y=C

where CC is an arbitrary constant.


2.


(y+2xy3)dx+(1+3x2y2+x)dy=0(y + 2xy^3)dx + (1+ 3x^2y^2 + x)dy = 0

Qx=6xy2+1,Py=1+6xy2\dfrac{\partial Q}{\partial x}=6xy^2+1, \dfrac{\partial P}{\partial y}=1+6xy^2

The given equation is exact because the partial derivatives are the same:


Qx=6xy2+1=Py\dfrac{\partial Q}{\partial x}=6xy^2+1=\dfrac{\partial P}{\partial y}

We have the following system of differential equations to find the function u(x,y)u(x, y)

{ux=y+2xy3uy=1+3x2y2+x\begin{cases} \dfrac{\partial u}{\partial x}=y + 2xy^3 \\ \\ \dfrac{\partial u}{\partial y}=1+ 3x^2y^2 + x \end{cases}

u(x,y)=(y+2xy3)dx=xy+x2y3+φ(y)u(x, y)=\int (y + 2xy^3)dx=xy+x^2y^3+\varphi (y)

uy=x+3x2y2+φ(y)=1+3x2y2+x\dfrac{\partial u}{\partial y}=x+3x^2y^2+\varphi' (y)=1+ 3x^2y^2 + x

φ(y)=1\varphi' (y)= 1



The general solution of the exact differential equation is given by


xy+x2y3+y=Cxy+x^2y^3+y=C

where CC is an arbitrary constant.


3.


3x2ydx+(x3+2y4)dy=03x^2ydx + (x^3+2y^4)dy = 0

Qx=3x2,Py=3x2\dfrac{\partial Q}{\partial x}=3x^2, \dfrac{\partial P}{\partial y}=3x^2

The given equation is exact because the partial derivatives are the same:


Qx=3x2=Py\dfrac{\partial Q}{\partial x}=3x^2=\dfrac{\partial P}{\partial y}

We have the following system of differential equations to find the function u(x,y)u(x, y)

{ux=3x2yuy=x3+2y4\begin{cases} \dfrac{\partial u}{\partial x}=3x^2y \\ \\ \dfrac{\partial u}{\partial y}=x^3+2y^4 \end{cases}

u(x,y)=3x2ydx=x3y+φ(y)u(x, y)=\int 3x^2ydx=x^3y+\varphi (y)

uy=x3+φ(y)=x3+2y4\dfrac{\partial u}{\partial y}=x^3+\varphi' (y)=x^3+2y^4

φ(y)=2y4\varphi' (y)=2y^4



The general solution of the exact differential equation is given by


x3y+25y5=Cx^3y+\dfrac{2}{5}y^5=C

where CC is an arbitrary constant.


4.


(1y)dx(xy2)dy=0(\dfrac{1}{y})dx - (\dfrac{x}{y^2})dy = 0

Qx=1y2,Py=1y2\dfrac{\partial Q}{\partial x}=-\dfrac{1}{y^2}, \dfrac{\partial P}{\partial y}=-\dfrac{1}{y^2}

The given equation is exact because the partial derivatives are the same:


Qx=1y2=Py\dfrac{\partial Q}{\partial x}=-\dfrac{1}{y^2}=\dfrac{\partial P}{\partial y}

We have the following system of differential equations to find the function u(x,y)u(x, y)


{ux=1yuy=xy2\begin{cases} \dfrac{\partial u}{\partial x}=\dfrac{1}{y} \\ \\ \dfrac{\partial u}{\partial y}=-\dfrac{x}{y^2} \end{cases}

u(x,y)=(1y)dx=xy+φ(y)u(x, y)=\int (\dfrac{1}{y})dx=\dfrac{x}{y}+\varphi (y)

uy=xy2+φ(y)=xy2\dfrac{\partial u}{\partial y}=-\dfrac{x}{y^2}+\varphi' (y)=-\dfrac{x}{y^2}

φ(y)=0\varphi' (y)=0

The general solution of the exact differential equation is given by


xy=C\dfrac{x}{y}=C

where CC is an arbitrary constant.


5.


(4x3y3)dx(3xy2)dy=0(4x^3-y^3)dx - (3xy^2)dy = 0

Qx=3y2,Py=3y2\dfrac{\partial Q}{\partial x}=-3y^2, \dfrac{\partial P}{\partial y}=-3y^2

The given equation is exact because the partial derivatives are the same:


Qx=3y2=Py\dfrac{\partial Q}{\partial x}=-3y^2=\dfrac{\partial P}{\partial y}

We have the following system of differential equations to find the function u(x,y)u(x, y)

{ux=4x3y3uy=3xy2\begin{cases} \dfrac{\partial u}{\partial x}=4x^3-y^3 \\ \\ \dfrac{\partial u}{\partial y}=-3xy^2 \end{cases}

u(x,y)=(4x3y3)dx=x4xy3+φ(y)u(x, y)=\int (4x^3-y^3)dx=x^4-xy^3+\varphi (y)

uy=3xy2+φ(y)=3xy2\dfrac{\partial u}{\partial y}=-3xy^2+\varphi' (y)=-3xy^2

φ(y)=0\varphi' (y)=0


The general solution of the exact differential equation is given by


x4xy3=Cx^4-xy^3=C

where CC is an arbitrary constant.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS