Question #208294

Find the laplace of cosat where a is a constant


1
Expert's answer
2021-07-16T08:18:40-0400

By definition of a Laplace transform we have

L(cosat)(s)=f(s)=0+estcos(at)dt\mathcal{L}(\cos at)(s)=f(s)=\int_0^{+\infty} e^{-st}\cos(at)\: dt

We will apply the integration by parts :

f(s)=1a([estsin(at)]0++0+sestsin(at)dt)f(s)= \frac{1}{a}\left(\left[e^{-st}\sin(at)\right]^{+\infty}_0+\int_0^{+\infty}se^{-st}\sin(at)\: dt \right)

The first bracket is 0, as est0 when t+e^{-st}\to0 \text{ when }t\to +\infty and sin(at)t=0=0\sin(at)_{t=0}=0. We then apply the integration by parts to the integral :

f(s)=[sa2estcos(at)]0+s2a20+estcos(at)dtf(s)=\left[-\frac{s}{a^2}e^{-st} \cos(at)\right]^{+\infty}_0-\frac{s^2}{a^2} \int_0^{+\infty} e^{-st} \cos(at) \: dt

The first bracket gives sa2\frac{s}{a^2} and the integral is just f(s)f(s), so we have :

f(s)=sa2s2a2f(s)f(s)=\frac{s}{a^2}-\frac{s^2}{a^2}f(s)

a2+s2a2f(s)=sa2\frac{a^2+s^2}{a^2}f(s)=\frac{s}{a^2}

And therefore, the final answer is f(s)=ss2+a2f(s)=\frac{s}{s^2+a^2} (defined for s>0s>0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS