Answer to Question #207804 in Differential Equations for abigail

Question #207804

y''+y=senx


1
Expert's answer
2021-06-17T14:51:41-0400
"y''+y=\\sin x"

Write the related homogeneous or complementary equation:


"y''+y=0"


The general solution of a nonhomogeneous equation is the sum of the general solution "y_h(x)" of the related homogeneous equation and a particular solution "y_p(x)" of the nonhomogeneous equation:


"y(x)=y_h(x)+y_p(x)"

Consider a homogeneous equation 


"y''+y=0"

Write the characteristic (auxiliary) equation:

"r_1=i, r_2=-i"

The general solution of the homogeneous equation is


"y_h(x)=C_1\\sin x+C_2\\cos x"



Let

"y_p=x(A\\sin x+B\\cos x)"

Then


"y_p'=A\\sin x+B\\cos x+x(A\\cos x-B\\sin x)"

"y_p''=A\\cos x-B\\sin x+A\\cos x-B\\sin x"

"+x(-A\\sin x-B\\cos x)"

Substitute


"A\\cos x-B\\sin x+A\\cos x-B\\sin x"

"+x(-A\\sin x-B\\cos x)+x(A\\sin x+B\\cos x)"

"=\\sin x"


"2A\\cos x-2B\\sin x=\\sin x"

"A=0, B=-\\dfrac{1}{2}"



The general solution of a second order homogeneous differential equation be


"y(x)=C_1\\sin x+C_2\\cos x-\\dfrac{1}{2}x\\cos x"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog