y = 2px + py^2
given Differential equation: y = 2px + py2
where p = "\\frac{dy}{dx}"
by putting this we get, y = 2"\\frac{dy}{dx}"x + "\\frac{dy}{dx}"y2
"\\implies" y = "\\frac{dy}{dx}"(2x+y2)
"\\implies" "\\frac{dx}{dy}" y = (2x+y2)
dividing by y both sides, we get
"\\implies" "\\frac{dx}{dy}" = "\\frac{2x}{y}" + y
"\\implies" "\\frac{dx}{dy}" "-" "\\frac{2x}{y}" = y
now it is a linear differential equation,
integrating factor (I.F) = "e^{\\int \\frac{-2}{y} dy}" = "e^{-2\\int \\frac{1}{y} dy}" = "e^{-2ln(y)}" = "e^{ln(\\frac{1}{y^2})}" = "\\frac{1}{y^2}"
therefore, the solution of given differential equation is
"\\implies" x"\\cdot" "\\frac{1}{y^2}" = "\\int \\frac{1}{y^2} \\cdot y \\cdot dy" + C where C is any constant
"\\implies" "\\frac{x}{y^2}" = "\\int \\frac{1}{y} \\cdot dy" + C
"\\implies" "\\frac{x}{y^2}" = "ln(y)" + C
"\\implies" x = y2ln(y) + Cy2
Comments
Leave a comment