Question #207413

how to solve y''-y'-12y=e4x

1
Expert's answer
2021-06-16T11:31:26-0400
yy12y=e4xy''-y'-12y=e^{4x}

Write the related homogeneous or complementary equation:


yy12y=0y''-y'-12y=0


The general solution of a nonhomogeneous equation is the sum of the general solution yh(x)y_h(x) of the related homogeneous equation and a particular solution yp(x)y_p(x) of the nonhomogeneous equation:


y(x)=yh(x)+yp(x)y(x)=y_h(x)+y_p(x)

Consider a homogeneous equation 


yy12y=0y''-y'-12y=0

Write the characteristic (auxiliary) equation:


r2r12=0r^2-r-12=0

(r4)(r+3)=0(r-4)(r+3)=0

r1=4,r2=3r_1=4, r_2=-3

The general solution of the homogeneous equation is


yh(x)=C1e4x+C2e3xy_h(x)=C_1e^{4x}+C_2e^{-3x}



Method of undetermined coefficients

Let the general solution of a second order homogeneous differential equation be


y(x)=C1(x)e4x+C2(x)e3xy(x)=C_1(x)e^{4x}+C_2(x)e^{-3x}

The unknown functions C1(x)C_1(x) and C2(x)C_2(x) can be determined from the system of two equations:


C1e4x+C2e3x=0C_1'e^{4x}+C_2'e^{-3x}=0

C1(4e4x)+C2(3e3x)=e4xC_1'(4e^{4x})+C_2'(-3e^{-3x})=e^{4x}



C2e3x=C1e4xC_2'e^{-3x}=-C_1'e^{4x}

4C1e4x+3C1e4x=e4x4C_1'e^{4x}+3C_1'e^{4x}=e^{4x}


C1=17C_1'=\dfrac{1}{7}

C2=17e7xC_2'=-\dfrac{1}{7}e^{7x}





C1=17x+c3C_1=\dfrac{1}{7}x+c_3

C2=149e7x+c2C_2=-\dfrac{1}{49}e^{7x}+c_2



The general solution of a second order homogeneous differential equation be


y(x)=c1e4x+c2e3x+17xe4xy(x)=c_1e^{4x}+c_2e^{-3x}+\dfrac{1}{7}xe^{4x}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS