Question #206811

Solve (D2+2DD'+D'2)z=cos(x+2y)+ex-2y.


1
Expert's answer
2022-02-06T15:34:00-0500

Given, (D2+2DD+D2)z=cos(x+2y)+ex2y(D^2 + 2DD'+D'^2)z = \cos(x+2y) + e^{x - 2y}


The auxiliary equation is m2+2m+1=0m^2 + 2m +1 =0. The roots of the auxiliary equation are m=1 (twice)m = -1~(\text{twice}). The complementary function is C.F=f1(yx)+xf2(yx).C.F = f_1(y-x) + xf_2(y-x).


The particular integral is

P.I=1D2+2DD+D2cos(x+2y)+1D2+2DD+D2ex2y      Replacing D2=1,DD=2,D2=22 for the first term and       Replacing D=1,D=2 for the second term, we get=112+2(2)22cos(x+2y)+11+212+(2)2ex2y=cos(x+2y)9+ex2y\begin{aligned} P.I &= \dfrac{1}{D^2 + 2DD'+D'^2} \cos(x + 2y) + \dfrac{1}{D^2 + 2DD'+D'^2} e^{x - 2y}\\ &~~~~~~\text{Replacing $D^2 = -1, DD' =-2, D'^2 = -2^2$ for the first term and }\\ &~~~~~~\text{Replacing $D = 1, D' = -2$ for the second term, we get}\\ &= \dfrac{1}{-1^2+2*(-2)-2^2}\cos(x+2y) + \dfrac{1}{1+2*1*-2+(-2)^2}e^{x-2y}\\ &=\dfrac{-\cos(x+2y)}{9}+e^{x-2y} \end{aligned}


Hence the solution is z=C.F + P.I=f1(yx)+xf2(yx)+ex2ycos(x+2y)9z = \text{C.F + P.I} = f_{1}(y-x)+xf_{2}(y-x)+e^{x-2y}-\dfrac{\cos(x+2y)}{9}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS