Given, (D2+2DD′+D′2)z=cos(x+2y)+ex−2y
The auxiliary equation is m2+2m+1=0. The roots of the auxiliary equation are m=−1 (twice). The complementary function is C.F=f1(y−x)+xf2(y−x).
The particular integral is
P.I=D2+2DD′+D′21cos(x+2y)+D2+2DD′+D′21ex−2y Replacing D2=−1,DD′=−2,D′2=−22 for the first term and Replacing D=1,D′=−2 for the second term, we get=−12+2∗(−2)−221cos(x+2y)+1+2∗1∗−2+(−2)21ex−2y=9−cos(x+2y)+ex−2y
Hence the solution is z=C.F + P.I=f1(y−x)+xf2(y−x)+ex−2y−9cos(x+2y)
Comments