Answer to Question #208299 in Differential Equations for Abuabu

Question #208299

Find the laplace transform of sinat where a is a constant


1
Expert's answer
2021-07-16T11:31:44-0400

"F(p) = \\int\\limits_0^\\infty {f(t){e^{ - pt}}} dt = \\int\\limits_0^\\infty {\\sin at \\cdot {e^{ - pt}}} dt = \\left| {\\begin{matrix}\n{u = \\sin at}&{dv = {e^{ - pt}}dt}\\\\\n{du = a\\cos atdt}&{v = - \\frac{1}{p}{e^{ - pt}}}\n\\end{matrix}} \\right| = \\mathop {\\lim }\\limits_{x \\to \\infty } \\left( { - \\left. {\\frac{1}{p}\\sin at \\cdot {e^{ - pt}}} \\right|_0^x + \\frac{a}{p}\\int\\limits_0^x {\\cos at{e^{ - pt}}} dt} \\right) = \\left| {\\begin{matrix}\n{u = \\cos at}&{dv = {e^{ - pt}}dt}\\\\\n{du = - a\\sin atdt}&{v = - \\frac{1}{p}{e^{ - pt}}}\n\\end{matrix}} \\right| = \\mathop {\\lim }\\limits_{x \\to \\infty } \\left( { - \\left. {\\frac{1}{p}\\sin at \\cdot {e^{ - pt}}} \\right|_0^x + \\frac{a}{p}\\left( { - \\frac{1}{p}\\cos at \\cdot \\left. {{e^{ - pt}}} \\right|_0^x - \\frac{a}{p}\\int\\limits_0^x {\\sin at \\cdot {e^{ - pt}}} dt} \\right)} \\right) = \\mathop {\\lim }\\limits_{x \\to \\infty } \\left( { - \\left. {\\frac{1}{p}\\sin at \\cdot {e^{ - pt}}} \\right|_0^x - \\frac{a}{{{p^2}}}\\cos at \\cdot \\left. {{e^{ - pt}}} \\right|_0^x - \\frac{{{a^2}}}{{{p^2}}}\\int\\limits_0^x {\\sin at \\cdot {e^{ - pt}}} dt} \\right) = 0 + 0 - 0 + \\frac{a}{{{p^2}}}\\cos 0 \\cdot {e^0} - \\frac{{{a^2}}}{{{p^2}}}\\mathop {\\lim }\\limits_{x \\to \\infty } \\int\\limits_0^x {\\sin at \\cdot {e^{ - pt}}} dt = \\frac{a}{{{p^2}}} - \\frac{{{a^2}}}{{{p^2}}}\\mathop {\\lim }\\limits_{x \\to \\infty } \\int\\limits_0^x {\\sin at \\cdot {e^{ - pt}}} dt"

Then

"F(p) = \\frac{a}{{{p^2}}} - \\frac{{{a^2}}}{{{p^2}}}F(p) \\Rightarrow F(p)\\left( {1 + \\frac{{{a^2}}}{{{p^2}}}} \\right) = \\frac{a}{{{p^2}}} \\Rightarrow F(p) \\cdot \\frac{{{p^2} + {a^2}}}{{{p^2}}} = \\frac{a}{{{p^2}}} \\Rightarrow F(p) = \\frac{a}{{{p^2} + {a^2}}}"

Answer: "F(p) = \\frac{a}{{{p^2} + {a^2}}}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog