Show that simple harmonic motion y(t) = C1 cos ωt + C2 sin ωt can be written as:
a. y(t) = A sin(ωt + ϕ0)
b. y(t) = A cos(ωt + ϕ1)
A=C12+C22,A=\sqrt{C_1^2+C_2^2},A=C12+C22,
ϕ0=arccosC2C12+C22,\phi_0=\arccos\frac{C_2}{\sqrt{C_1^2+C_2^2}},ϕ0=arccosC12+C22C2,
ϕ1=−arcsinC2C12+C22.\phi_1=-\arcsin\frac{C_2}{\sqrt{C_1^2+C_2^2}}.ϕ1=−arcsinC12+C22C2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments