Question #310347

Show that low-frequency limit of Planck’s Law reduces to the Rayleigh-Jeans Law


and in the high-frequency limit reduces to Wien’s Law

1
Expert's answer
2022-03-13T18:47:27-0400

The Planck’s Law says

B(ν,T)=2hν3c21ehν/kT1B(\nu,T)=\frac{2h\nu^3}{c^2}\frac{1}{e^{h\nu/kT}-1}

At low-frequency

ehν/kT1=1+hν/kT1=hν/kTe^{h\nu/kT}-1=1+h\nu/kT-1=h\nu/kT

Hence

B(ν,T)=2hν3c21hν/kT=2ν2c2kTB(\nu,T)=\frac{2h\nu^3}{c^2}\frac{1}{h\nu/kT}=\frac{2\nu^2}{c^2}kT

At high-frequency

ehν/kT1=ehν/kTe^{h\nu/kT}-1=e^{h\nu/kT}

Hence

B(ν,T)=2hν3c21ehν/kT=2hν3c2ehν/kTB(\nu,T)=\frac{2h\nu^3}{c^2}\frac{1}{e^{h\nu/kT}}=\frac{2h\nu^3}{c^2}e^{-h\nu/kT}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS