Calculate de broglie wavelength and velocity of an electron carrying kinetic energy 3keV
We find the speed of an electron, knowing its kinetic energyWk=me⋅v22W_k=\frac{m_e \cdot v^2}{2}Wk=2me⋅v2
v=2⋅Wkme=2⋅3⋅103⋅1.6⋅10−199.1⋅10−31=3.248⋅107m/sv=\sqrt{\frac{2 \cdot W_k}{m_e}}=\sqrt{\frac{2 \cdot 3 \cdot 10^3 \cdot 1.6 \cdot 10^{-19}}{9.1 \cdot 10^{-31}}}=3.248 \cdot 10^7 m/sv=me2⋅Wk=9.1⋅10−312⋅3⋅103⋅1.6⋅10−19=3.248⋅107m/s
the speed of an electron is much less than the speed of light
v<<cv<< cv<<c
therefore, finds the de Broglie wavelength by the formula
λdb=hme⋅v=6.62⋅10−349.1⋅10−31⋅3.248⋅107=2.24⋅10−11m\lambda_{db}=\frac{h}{m_e \cdot v}= \frac{6.62 \cdot 10^{-34}}{9.1 \cdot 10^{-31}\cdot 3.248 \cdot 10^7 }=2.24 \cdot 10^{-11}mλdb=me⋅vh=9.1⋅10−31⋅3.248⋅1076.62⋅10−34=2.24⋅10−11m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Many many thanks!
Comments
Many many thanks!