Question #283840

A particle of mass m is confined between 0<=x<=l. If px be the momentum, then find px in the ground state



1
Expert's answer
2022-01-02T18:26:18-0500

ψ(x)=2LsinnπxLn=1grounstateψ(x)=2LsinπxL\psi(x)=\sqrt\frac{{2}}{L}sin\frac{n\pi x}{L}\\n=1 \\grounstate \\\psi(x)=\sqrt\frac{{2}}{L}sin\frac{\pi x}{L}

<px>=0Lψpxψdx0Lψψdx<p_x>=\frac{\smallint_{0}^{L}\psi^* p_x \psi dx}{\smallint_{0}^L\psi\psi^* dx}

<px>=0L2LsinπxLddx(2LsinπxL)dx0L(2LsinπxL2LsinπxL)dx<p_x>=\frac{{\smallint_{0}^{L}}\sqrt\frac{2}{L}sin\frac{\pi x}{L}\frac{d}{dx}(\sqrt\frac{2}{L}sin\frac{\pi x}{L})dx}{\smallint_{0}^{L}(\sqrt\frac{2}{L}sin\frac{\pi x}{L}\sqrt\frac{{2}}{L}sin\frac{\pi x}{L})dx}

<px>=0L2πL2sinπxLcosπxLdx<p_x>=\smallint_{0}^{L}\frac{2\pi}{L^2}sin\frac{\pi x}{L}cos\frac{\pi x}{L}dx

Where

0L2LsinπxL2LsinπxLdx=1\smallint_{0}^{L}\sqrt\frac{{2}}{L}sin\frac{\pi x}{L}\sqrt\frac{{2}}{L}sin\frac{\pi x}{L}dx=1

<px>=0LπL2sin2πxL<p_x>=\smallint_{0}^{L}\frac{\pi}{L^2}sin\frac{2\pi x}{L}

<px>=πL20Lsin2πxL<p_x>=\frac{\pi}{L^2}\smallint_{0}^{L}sin\frac{2\pi x}{L}

<px>=πL2(L2π)(cos2πxL)0L<p_x>=\frac{\pi}{L^2}(\frac{L}{2\pi})|(\frac{cos2\pi x}{L})|_{0}^{L}

<px>=πL2(L2π)(cos0cos2π)<p_x>=\frac{\pi}{L^2}(\frac{L}{2\pi})(cos0-cos{2\pi})

<px>=πL2×L2π(11)=0<p_x>=\frac{\pi}{L^2}\times\frac{L}{2\pi}(1-1)=0

<px>=0<p_x>=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS