ψ ( x ) = 2 L s i n n π x L n = 1 g r o u n s t a t e ψ ( x ) = 2 L s i n π x L \psi(x)=\sqrt\frac{{2}}{L}sin\frac{n\pi x}{L}\\n=1 \\grounstate \\\psi(x)=\sqrt\frac{{2}}{L}sin\frac{\pi x}{L} ψ ( x ) = L 2 s in L nπ x n = 1 g ro u n s t a t e ψ ( x ) = L 2 s in L π x
< p x > = ∫ 0 L ψ ∗ p x ψ d x ∫ 0 L ψ ψ ∗ d x <p_x>=\frac{\smallint_{0}^{L}\psi^* p_x \psi dx}{\smallint_{0}^L\psi\psi^* dx} < p x >= ∫ 0 L ψ ψ ∗ d x ∫ 0 L ψ ∗ p x ψ d x
< p x > = ∫ 0 L 2 L s i n π x L d d x ( 2 L s i n π x L ) d x ∫ 0 L ( 2 L s i n π x L 2 L s i n π x L ) d x <p_x>=\frac{{\smallint_{0}^{L}}\sqrt\frac{2}{L}sin\frac{\pi x}{L}\frac{d}{dx}(\sqrt\frac{2}{L}sin\frac{\pi x}{L})dx}{\smallint_{0}^{L}(\sqrt\frac{2}{L}sin\frac{\pi x}{L}\sqrt\frac{{2}}{L}sin\frac{\pi x}{L})dx} < p x >= ∫ 0 L ( L 2 s in L π x L 2 s in L π x ) d x ∫ 0 L L 2 s in L π x d x d ( L 2 s in L π x ) d x
< p x > = ∫ 0 L 2 π L 2 s i n π x L c o s π x L d x <p_x>=\smallint_{0}^{L}\frac{2\pi}{L^2}sin\frac{\pi x}{L}cos\frac{\pi x}{L}dx < p x >= ∫ 0 L L 2 2 π s in L π x cos L π x d x
Where
∫ 0 L 2 L s i n π x L 2 L s i n π x L d x = 1 \smallint_{0}^{L}\sqrt\frac{{2}}{L}sin\frac{\pi x}{L}\sqrt\frac{{2}}{L}sin\frac{\pi x}{L}dx=1 ∫ 0 L L 2 s in L π x L 2 s in L π x d x = 1
< p x > = ∫ 0 L π L 2 s i n 2 π x L <p_x>=\smallint_{0}^{L}\frac{\pi}{L^2}sin\frac{2\pi x}{L} < p x >= ∫ 0 L L 2 π s in L 2 π x
< p x > = π L 2 ∫ 0 L s i n 2 π x L <p_x>=\frac{\pi}{L^2}\smallint_{0}^{L}sin\frac{2\pi x}{L} < p x >= L 2 π ∫ 0 L s in L 2 π x
< p x > = π L 2 ( L 2 π ) ∣ ( c o s 2 π x L ) ∣ 0 L <p_x>=\frac{\pi}{L^2}(\frac{L}{2\pi})|(\frac{cos2\pi x}{L})|_{0}^{L} < p x >= L 2 π ( 2 π L ) ∣ ( L cos 2 π x ) ∣ 0 L
< p x > = π L 2 ( L 2 π ) ( c o s 0 − c o s 2 π ) <p_x>=\frac{\pi}{L^2}(\frac{L}{2\pi})(cos0-cos{2\pi}) < p x >= L 2 π ( 2 π L ) ( cos 0 − cos 2 π )
< p x > = π L 2 × L 2 π ( 1 − 1 ) = 0 <p_x>=\frac{\pi}{L^2}\times\frac{L}{2\pi}(1-1)=0 < p x >= L 2 π × 2 π L ( 1 − 1 ) = 0
< p x > = 0 <p_x>=0 < p x >= 0
Comments