We know that wave equation
ψ(x,t)=Aei(kx−wt)
Hamilton equation
H=T+V
Now
E=2mp2+V(x)
Take first derivative of a function
dtdψ(x,t)=−iwAe(kx−wt)=−iwψ(x,t)
dt2d2ψ(x,t)=−k2Ae(kx−wt)=−k2ψ(x,t) dt2d2ψ(x,t)=ℏ2−p2ψ(x,t)
Eψ(x,t)=2mp2ψ(x,t)+V(x)ψ(x,t)→(1) P=ℏkk=λ2π
Eψ(x,t)=2m−ℏ2dt2d2ψ(x,t)+V(x)ψ(x,t) E=ℏw
Eψ(x,t)=−iwℏwψ(x,t)
iℏdtdψ=−2mℏ2dx2d2ψ(x,t)+V(x)ψ(x,t)
Comments