Question #283551

Derive schrodingers equation

1
Expert's answer
2021-12-29T13:06:56-0500

We know that wave equation

ψ(x,t)=Aei(kxwt)\psi(x,t)=Ae^{i(kx-wt)}

Hamilton equation

H=T+V

Now

E=p22m+V(x)E=\frac{p^2}{2m}+V(x)

Take first derivative of a function


dψ(x,t)dt=iwAe(kxwt)=iwψ(x,t)\frac{d\psi(x,t)}{dt}=-iwAe^{(kx-wt)}=-iw\psi(x,t)

d2ψ(x,t)dt2=k2Ae(kxwt)=k2ψ(x,t)\frac{d^2\psi(x,t)}{dt^2}=-k^2Ae^{(kx-wt)}=-k^2\psi(x,t)

d2ψ(x,t)dt2=p22ψ(x,t)\frac{d^2\psi(x,t)}{dt^2}=\frac{-p^2}{\hbar^2}\psi(x,t)


Eψ(x,t)=p22mψ(x,t)+V(x)ψ(x,t)(1)E\psi(x,t)=\frac{p^2}{2m}\psi(x,t)+V(x)\psi(x, t)\rightarrow(1)

P=kk=2πλP=\hbar k\\k=\frac{2\pi}{\lambda}


Eψ(x,t)=22md2dt2ψ(x,t)+V(x)ψ(x,t)E\psi(x,t)=\frac{-\hbar^2}{2m}\frac{d^2}{dt^2}\psi(x,t)+V(x)\psi(x,t)

E=wE=\hbar w

Eψ(x,t)=wiwψ(x,t)E\psi(x,t)=-\frac{\hbar w}{iw}\psi(x,t)

idψdt=22md2dx2ψ(x,t)+V(x)ψ(x,t)i\hbar\frac{d\psi}{dt}=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x,t)+V(x)\psi(x,t)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS