Question #282973

 If A, B and C are Hermitian operators, determine if the following combinations are Hermitian: (a) A + B (b) 1 2i [A, B] (c) (ABC − CBA) (d) A2 + B2 + C 2 (e) (A + iB)


1
Expert's answer
2022-02-09T09:15:10-0500

Answer

Given that


A, B ,C are Hermitian operators

So

A^+=A^B^+=B^C^+=C^\hat{A}^+=\hat{A}\\\hat{B}^+=\hat{B}\\ \hat{C}^+=\hat{C}

Therefore checking hermitian

(a)(A+B)+=A++B+=A+B(a) (A + B ) ^+= A^+ + B^+\\= A + B

(b)(2i[A,B])+=(2i)[B,A]=2i[A,B](b) (2i[A , B ] )^+=(-2i) [B,A]\\=2i [A , B ]

d) (A2+B2+C2)+=A2+B2+C2(A^2 + B^2+C^2 ) ^+\\= A^2 + B ^2+C^2

So options a b d are Hermitian and other are not.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS