if known psi(x)=(2-i)e3ix determine |psi(x)|2
ψ(x)=(2−i)e3ix,\psi(x)=(2-i)e^{3ix},ψ(x)=(2−i)e3ix,
ψ∗(x)=(2+i)e−3ix,\psi^*(x)=(2+i)e^{-3ix},ψ∗(x)=(2+i)e−3ix,
∣ψ(x)∣2=ψψ∗=(2−i)e3ix(2+i)e−3ix=5⋅1=5.|\psi(x)|^2=\psi\psi^*=(2-i)e^{3ix}(2+i)e^{-3ix}=5\cdot 1=5.∣ψ(x)∣2=ψψ∗=(2−i)e3ix(2+i)e−3ix=5⋅1=5.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments