F=kx2,F=kx^2,F=kx2,
A=∫Fdx=kx33,A=\int Fdx=\frac{kx^3}3,A=∫Fdx=3kx3,
E=mv22,E=\frac{mv^2}2,E=2mv2,
A=E, ⟹ v2=2kx33m,A=E,\implies v^2=\frac{2kx^3}{3m},A=E,⟹v2=3m2kx3,
lmax=v2g=2kx33mg=R.l_{max}=\frac{v^2}g=\frac{2kx^3}{3mg}=R.lmax=gv2=3mg2kx3=R.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments