Ψ(x)=Nxe−x2/16
In order to find the energy potential in which the particle is moving, we must insert
Ψ(x,t) in Schrodinger Equation,
iℏ∂t∂Ψ=−2mℏ2∂x2∂2Ψ+VΨ
∂t∂Ψ=0
∂x∂Ψ=Ne−x2/16+Nxe−x2/16×16−2x
∂x∂Ψ=Ne−x2/16(1−8x2)
∂x2∂2Ψ=Ne−x2/164x+N8xe−x2/16(1−8x2)
∂x2∂2Ψ=4Ψ(x)+8Ψ(x)(1−8x2)
∂x2∂2Ψ=32Ψ(x)(12−x2)
Substituting these values in Schrodinger equation
VΨ(x)=2mℏ232Ψ(x)(12−x2)
V(x)=64mℏ2(12−x2)
Comments