Answer to Question #198788 in Quantum Mechanics for arsene mihigo

Question #198788

14) A particle of mass m moves according to


2 3


x = x + at , y = bt , z = ct , where a, b and c are


constants.(a)Find the angular momentum L

r

at any time. (b) Find the force F

r

, and from it the


torque τ

r

acting on the particle. Verify that these quantities satisfy

dL

r F

dt

= × =τ


1
Expert's answer
2021-05-26T12:55:48-0400

Let us consider the diagram below





Solution

  1. Particle one :

r1=2.0mi+1.0mj,p1=2.0kg(4.0m/sj)=8.0kg.m/sjr_1=2.0mi+1.0mj,p_1=2.0kg(4.0m/sj)=8.0kg.m/sj

lr=r1×p1=16.0kg.m2/sk.l_r=r_1 \times p_1=-16.0kg.m^2/sk.

particle 2:

r2=4.0mi+1.0mj,p2=4.0kg(5.0m/sj)=20.0kg.m/sir_2=4.0mi+1.0mj,p_2=4.0kg(5.0m/sj)=20.0kg.m/si

l2=r2×p2=20.0kg.m2/sk.l_2=r_2 \times p_2=-20.0kg.m^2/sk.

particle 3:

r3=2.0mi+2.0mj,p3=1.0kg(3.0m/sj)=3.0kg.m/sir_3=2.0mi+2.0mj,p_3=1.0kg(3.0m/sj)=3.0kg.m/si

l3=r3×p3=6.0kg.m2/sk.l_3=r_3\times p_3=-6.0kg.m^2/sk.

we add the individual angular moments to find the total about the origin:

lr=l1+l2+l3=30kg.m2/skl_r=l_1+l_2+l_3=-30kg.m^2/sk


2.The individual forces and lever arms are

r1=1.0mj,F1=6.0Ni,τ1=6.0N.mkr_{1\perp}=1.0mj, F_1=-6.0N_i,\tau_1=6.0N.mk

r2=4.0mi,F2=10.0Nj,τ2=40.0N.mkr_{2\perp}=4.0mi, F_2=10.0N_j,\tau_2=40.0N.mk

r3=2.0mi,F3=8.0Nj,τ3=16.0N.mkr_{3\perp}=2.0mi, F_3=-8.0N_j,\tau_3=-16.0N.mk


Therefore:


iτi=τ1+τ2+τ3=30N.mk.\sum_i\tau_i=\tau_1+\tau_2+\tau_3=30N.mk.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment