14) A particle of mass m moves according to
2 3
x = x + at , y = bt , z = ct , where a, b and c are
constants.(a)Find the angular momentum L
r
at any time. (b) Find the force F
r
, and from it the
torque τ
r
acting on the particle. Verify that these quantities satisfy
dL
r F
dt
= × =τ
Let us consider the diagram below
Solution
"r_1=2.0mi+1.0mj,p_1=2.0kg(4.0m\/sj)=8.0kg.m\/sj"
"l_r=r_1 \\times p_1=-16.0kg.m^2\/sk."
particle 2:
"r_2=4.0mi+1.0mj,p_2=4.0kg(5.0m\/sj)=20.0kg.m\/si"
"l_2=r_2 \\times p_2=-20.0kg.m^2\/sk."
particle 3:
"r_3=2.0mi+2.0mj,p_3=1.0kg(3.0m\/sj)=3.0kg.m\/si"
"l_3=r_3\\times p_3=-6.0kg.m^2\/sk."
we add the individual angular moments to find the total about the origin:
"l_r=l_1+l_2+l_3=-30kg.m^2\/sk"
2.The individual forces and lever arms are
"r_{1\\perp}=1.0mj, F_1=-6.0N_i,\\tau_1=6.0N.mk"
"r_{2\\perp}=4.0mi, F_2=10.0N_j,\\tau_2=40.0N.mk"
"r_{3\\perp}=2.0mi, F_3=-8.0N_j,\\tau_3=-16.0N.mk"
Therefore:
"\\sum_i\\tau_i=\\tau_1+\\tau_2+\\tau_3=30N.mk."
Comments
Leave a comment